- ai绘画工具midjourney怎么下载?附作品管理教程
设计师早上好
Midjourney是一款功能强大的AI绘画工具,它使用机器学习技术和深度神经网络等算法,可以生成各种艺术风格的绘画作品。在创意设计、广告宣传等方面有着广泛的应用前景。那么,ai绘画工具midjourney怎么下载?本文将为您介绍Midjourney的下载以及作品的相关管理。一、Midjourney下载Midjourney的下载非常简单,只需打开Midjourney官网(点击“GetMidjour
- 机器学习和深度学习的区别
不会代码的小林
机器学习
机器学习和深度学习在多个方面存在显著的区别,以下是对这些区别的详细阐述:一、定义与起源机器学习:是人工智能的一个分支领域,它使计算机能够从数据中学习并改进其性能,而无需进行显式编程。机器学习起源于20世纪50年代,随着算法和计算能力的不断发展而逐渐成熟。深度学习:则是机器学习的一个子领域,它利用深度神经网络模型进行学习和预测。深度学习在21世纪初开始兴起,特别是随着大数据的普及和计算能力的显著提升
- 深度神经网络详解:原理、架构与应用
阿达C
活动dnn计算机网络人工智能神经网络机器学习深度学习
深度神经网络(DeepNeuralNetwork,DNN)是机器学习领域中最为重要和广泛应用的技术之一。它模仿人脑神经元的结构,通过多层神经元的连接和训练,能够处理复杂的非线性问题。在图像识别、自然语言处理、语音识别等领域,深度神经网络展示了强大的性能。本文将深入解析深度神经网络的基本原理、常见架构及其实际应用。一、深度神经网络的基本原理1.1神经元和感知器神经元是深度神经网络的基本组成单元。一个
- 如何利用AI提高内容生产效率?
学计算机的睿智大学生
人工智能
如何利用AI提高内容生产效率?简介:探讨如何通过AI技术提升内容生产的效率和质量。方向一:自动化内容生成自动化内容生成是一种利用人工智能技术来自动创建文本、图像、音频等内容的方法。以下是一些常见的自动化内容生成方式:基于模板的生成:根据预设的模板和规则来生成内容。基于数据的生成:利用大量的数据进行学习和推理,从而生成新的内容。基于深度学习的生成:通过训练深度神经网络来生成自然语言文本等内容。需要注
- 关于深度森林的一点理解
Y.G Bingo
机器学习方法机器学习神经网络
2017年年初,南京大学周志华老师上传了一篇名为:DeepForest:TowardsAnAlternativetoDeepNeuralNetworks的论文,一石激起千层浪,各大媒体纷纷讨论着,这似乎意味着机器学习的天色要变,实则不然,周志华老师通过微博解释道,此篇论文不过是为机器学习打开了另一扇窗,是另一种思维,而不是真的去替代深度神经网络(DNN)。下面我就简单概括一下我对这篇论文的理解,如
- LeYOLO 用于目标检测的新型可扩展和高效CNN架构 | 最新轻量化SOTA! 5GFLOP下无对手!
迪菲赫尔曼
YOLOv8改进实战目标检测cnn架构pytorch深度学习轻量化
本改进已集成到YOLOv8-Magic框架。论文地址:https://arxiv.org/pdf/2406.14239代码地址:https://github.com/LilianHollard/LeYOLO/tree/main在深度神经网络中,计算效率对于目标检测至关重要,尤其是在新型模型更倾向于速度而非计算效率(浮点运算次数,FLOP)的情况下。这种演变在一定程度上忽视了嵌入式和面向移动的AI目
- 【计算机视觉前沿研究 热点 顶会】ECCV 2024中Mamba有关的论文
平安顺遂事事如意
顶刊顶会论文合集计算机视觉论文笔记目标跟踪ECCVMamba状态空间模型人工智能
MambaIR:状态空间模型图像恢复的简单基线近年来,图像恢复技术取得了长足的进步,这在很大程度上归功于现代深度神经网络的发展,如CNN和Transformers。然而,现有的修复骨干往往面临全局接受域和高效计算之间的两难困境,阻碍了它们在实践中的应用。最近,选择性结构化状态空间模型,特别是改进的Mamba模型,在线性复杂度的长程依赖建模方面显示出了巨大的潜力,为解决上述困境提供了一条途径。然而,
- 模型剪枝综述
发狂的小花
人工智能#模型部署深度学习人工智能模型部署模型剪枝性能优化
目录1深度神经网络的稀疏性:2剪枝算法分类:3具体的剪枝方法包括:4剪枝算法流程:5几种常见的剪枝算法:6结构化剪枝和非结构化剪枝各有其优缺点:7剪枝算法对模型精度的影响8影响剪枝算法对模型精度的因素模型压缩中的剪枝算法是一种应用广泛的模型压缩方法,其通过剔除模型中“不重要”的权重,来减少模型的参数量和计算量,同时尽量保证模型的精度不受影响。模型剪枝的核心是模型中的权重、激活、梯度等是稀疏的,减少
- 环境安装-1:Python3.8+CUDA11.6.1+cuDNN8.6+Tensorflow-gpu2.6.1
w坐看云起时
环境安装tensorflowpython人工智能
环境配置建议多看几个别人的安装过程的图文,不要着急,慢慢来,我们肯定行,加油!一、知识储备1.CUDACUDA是显卡厂商NVIDIA推出的运算平台。CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。(来自百度词条)2.cuDNNNVIDIACUDA深度神经网络库(cuDNN)是一个GPU加速的深度神经网络基元库,能够以高度优化的方式实现标准例程(如前向和反
- 学习笔记---自动驾驶
酒饮微醉-
自动驾驶学习笔记自动驾驶
一、理论知识1.自动驾驶决策概述:自动驾驶决策层是系统的核心,负责根据感知层信息建立模型,分析并制定决策策略,控制车辆行驶。2.端到端深度神经网络:通过深度神经网络将感知数据直接映射到控制命令,简化自动驾驶系统的决策流程。3.卷积神经网络(CNN):关键技术用于提取图像特征,包括卷积层、激活函数、池化层等组件处理图像数据。4.循环神经网络(RNN):处理序列数据,如车辆历史速度序列,用于建模时间序
- 深度学习(二)
小泽爱刷题
深度学习人工智能
CuDNN(CUDADeepNeuralNetworklibrary)是NVIDIA为加速深度学习计算而开发的高性能GPU加速库,专门优化了深度神经网络(DNN)的常见操作,如卷积、池化、归一化和激活函数等。CuDNN的主要作用是通过利用GPU的并行计算能力,提高深度学习模型在GPU上的运行效率。CuDNN的作用加速卷积操作:卷积操作是深度学习中特别是在卷积神经网络(CNN)中最重要且最计算密集的
- 这项来自中国的AI研究介绍了1位全量化训练(FQT):增强了全量化训练(FQT)的能力至1位
量子位AI
人工智能机器学习深度学习
全量化训练(FQT)可以通过将激活、权重和梯度转换为低精度格式来加速深度神经网络的训练。量化过程使得计算速度更快,且内存利用率更低,从而使训练过程更加高效。FQT在尽量减少数值精度的同时,保持了训练的有效性。研究人员一直在研究1位FQT的可行性,试图探索这些限制。该研究首先从理论上分析了FQT,重点关注了如Adam和随机梯度下降(SGD)等知名的优化算法。分析中出现了一个关键发现,那就是FQT收敛
- 每天五分钟计算机视觉:Siamese深度神经网络模型和FaceNet的关系
幻风_huanfeng
计算机视觉计算机视觉dnn人工智能SiameseFaceNet神经网络
本文重点在前面的课程中,我们学习了Siamese深度神经网络模型和FaceNet,二者都可以完成人脸识别任务,本文进行整理学习,理清二者的区别和联系。基本概念与原理Siamese深度神经网络模型Siamese网络,又称孪生网络,由两个结构相同且权重共享的神经网络组成。这两个网络分别处理输入的对比样本,通过比较两个输入样本的特征向量来判断它们的相似度。在人脸识别中,Siamese网络通过计算输入人脸
- 深度学习中的梯度消失和梯度爆炸问题
码上飞扬
深度学习人工智能梯度消失梯度爆炸
在深度学习领域,随着模型层数的增加,我们常常会遇到两个棘手的问题:梯度消失(VanishingGradients)和梯度爆炸(ExplodingGradients)。这两个问题严重影响了深度神经网络的训练效率和性能。本文将详细介绍这两个问题,并通过实例帮助读者更好地理解。一、梯度消失问题梯度消失是深度学习中的一大难题,尤其在训练深度神经网络时显得尤为棘手。这一问题的本质在于,当我们在训练过程中通过
- 吴恩达深度学习笔记(24)-为什么要使用深度神经网络?
极客Array
为什么使用深层表示?(Whydeeprepresentations?)我们都知道深度神经网络能解决好多问题,其实并不需要很大的神经网络,但是得有深度,得有比较多的隐藏层,这是为什么呢?我们一起来看几个例子来帮助理解,为什么深度神经网络会很好用。首先,深度网络在计算什么?如果你在建一个人脸识别或是人脸检测系统,深度神经网络所做的事就是,当你输入一张脸部的照片,然后你可以把深度神经网络的第一层,当成一
- AI人工智能深度学习算法:卷积神经网络的原理与应用
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能深度学习算法:卷积神经网络的原理与应用作者:禅与计算机程序设计艺术1.背景介绍1.1人工智能的兴起与深度学习的崛起人工智能(AI)是指计算机科学的一个分支,旨在创造能够执行通常需要人类智能的任务的智能机器,例如学习、解决问题和决策。近年来,人工智能取得了显著的进展,这在很大程度上归功于深度学习的崛起,深度学习是一种强大的机器学习形式,它使用具有多个层的深度神经网络来学习数据中的复杂模式
- python 数据分析 损失数值 如何放到csv中呢 人工智能 深度神经网络,Pytorch ,tensorflow
zhangfeng1133
python人工智能数据分析
损失数值如何放到csv中呢在Python中,使用`csv`模块将数据写入CSV文件是一种常见的操作。从你提供的代码片段来看,你想要将损失数值写入名为`middle_losse.csv`的文件中。但是,你提供的代码片段中存在一些需要修改的地方,以确保数据能够正确地写入CSV文件。首先,`csv.writer`对象的`writerows`方法需要一个可迭代对象,例如列表的列表,而不是单个列表。如果你的
- 人脸识别设计
melonbo
项目分享深度学习人脸识别openface
总体思路人脸识别使用的算法思路为:首先,定位一张图像中所有的人脸位置;其次,对于同一张脸,当光线改变或者朝向方位改变时,算法还能判断是同一张脸;然后找到每一张脸不同于其他脸的独特之处,比如脸的大小、眉毛的弯曲程度,并表示出来;最后,通过把表示出来的脸的特征数据与数据库中的所有的人脸特征进行匹配,确定图像中人的身份信息。模型介绍OpenFace是一个基于深度神经网络的人脸识别和面部特征提取系统,它主
- 反向传播算法:深度神经网络学习的核心机制
2402_85758936
算法dnn学习
引言深度神经网络(DNNs)之所以在众多领域取得革命性的成功,很大程度上归功于其强大的学习能力,而这一能力的核心是反向传播算法(Backpropagation)。这是一种高效的监督学习算法,用于训练多层前馈神经网络。本文将深入探讨反向传播算法的工作原理及其在DNN中的应用。反向传播算法的基本概念反向传播算法结合了梯度下降优化和链式法则,通过计算损失函数关于网络参数的梯度来更新网络权重。1.损失函数
- 【pytorch(cuda)】基于DQN算法的无人机三维城市空间航线规划(Python代码实现)
程序猿鑫
pythonpytorch算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、DQN算法概述三、基于DQN的无人机三维航线规划方法1.环境建模2.状态与动作定义3.奖励函数设计4.深度神经网络训练5.航线规划四、研究挑战与展望2运行结果3参考文献4Python代码实现⛳️赠与读者做科研,涉及到一个深在的
- 基于深度学习的手势识别系统
毕设宇航
深度学习人工智能手势识别
基于深度学习网络的手势识别系统完整源码+数据集+报告+PPT全套信息【python设计开发】基于深度学习的手势图像识别处理系统【包括】代码PPT报告2需求分析2.1要求(1)用Python语言实现程序设计;(2)初识深度学习和图像处理技术;(3)了解深度神经网络(DeepNeuralNetworks,简称DNN)相关知识;(4)【难点】了解LeNet-5卷积神经网络模型,并进行模型训练;(5)【难
- 基于物理信息的深度神经网络模拟混凝土中氯离子的扩散
算法如诗
物理信息网络(PINN)dnn人工智能神经网络
氯离子在混凝土中的扩散是一个复杂的化学物理过程,对混凝土腐蚀起始时间的预测具有重要意义。但考虑到混凝土的非线性氯离子结合能力,模拟氯离子扩散的方程是有限的。本研究提出了一种基于物理信息的深度神经网络来模拟氯离子在混凝土中的扩散机制并预测氯离子浓度的分布。物理定律被制定为一个损失项,以指导训练过程,并减少模型训练所需的数据。然后将物理约束损失(基于控制方程和边界条件)和训练损失(基于神经网络)融合产
- 最新基于MATLAB机器学习、深度学习实践技术应用
weixin_贾
python深度学习MATLAB编程matlab机器学习深度学习
近年来,MATLAB在机器学习和深度学习领域的发展取得了显著成就。其强大的计算能力和灵活的编程环境使其成为科研人员和工程师的首选工具。在无人驾驶汽车、医学影像智能诊疗、ImageNet竞赛等热门领域,MATLAB提供了丰富的算法库和工具箱,极大地推动了人工智能技术的应用和创新。系统学习机器学习和深度学习的理论知识及对应的代码实现方法,掌握图像处理的基础知识,以及经典机器学习算法和最新的深度神经网络
- 神经网络(深度学习,计算机视觉,得分函数,损失函数,前向传播,反向传播,激活函数)
MarkHD
深度学习神经网络计算机视觉
神经网络,特别是深度学习,在计算机视觉等领域有着广泛的应用。以下是关于你提到的几个关键概念的详细解释:神经网络:神经网络是一种模拟人脑神经元结构的计算模型,用于处理复杂的数据和模式识别任务。它由多个神经元(或称为节点)组成,这些神经元通过权重和偏置进行连接,并可以学习调整这些参数以优化性能。深度学习:深度学习是神经网络的一个子领域,主要关注于构建和训练深度神经网络(即具有多个隐藏层的神经网络)。通
- 飞桨科学计算套件PaddleScience
skywalk8163
人工智能paddlepaddle人工智能飞桨
PaddleScience是一个基于深度学习框架PaddlePaddle开发的科学计算套件,利用深度神经网络的学习能力和PaddlePaddle框架的自动(高阶)微分机制,解决物理、化学、气象等领域的问题。支持物理机理驱动、数据驱动、数理融合三种求解方式,并提供了基础API和详尽文档供用户使用与二次开发。安装当然要先安装好飞桨PaddlePaddle,再安装PaddleSciencepipinst
- 深度学习——梯度消失、梯度爆炸
小羊头发长
深度学习机器学习人工智能
本文参考:深度学习之3——梯度爆炸与梯度消失梯度消失和梯度爆炸的根源:深度神经网络结构、反向传播算法目前优化神经网络的方法都是基于反向传播的思想,即根据损失函数计算的误差通过反向传播的方式,指导深度网络权值的更新。为什么神经网络优化用到梯度下降的优化方法?深度网络是由许多非线性层(带有激活函数)堆叠而成,每一层非线性层可以视为一个非线性函数f(x),因此整个深度网络可以视为一个复合的非线性多元函数
- 深度学习——第8章 深层神经网络(DNN)
曲入冥
深度学习深度学习神经网络dnn机器学习人工智能
第8章深层神经网络(DNN)目录8.1神经网络为什么要深?8.2深层神经网络标记符号8.3正向传播8.4反向传播8.5多分类Softmax8.6总结上一课是实战内容,我们使用Python一步步搭建了一个最简单的神经网络模型,只包含单层隐藏层。并使用这个简单模型对非线性可分的样本集进行分类,最终得到了不错的分类效果。本节将继续从深度神经网络入手,介绍深层神经网络的数学原理和推导过程。8.1神经网络为
- 深度学习与机器学习的关系
数字化信息化智能化解决方案
深度学习机器学习人工智能
深度学习和机器学习的关系深度学习是机器学习的一个子领域,专注于使用神经网络,特别是深度神经网络(DNN)来解决各种问题。可以说,深度学习是机器学习的一种方法或技术。两者都致力于通过从数据中提取有用的信息或模式来自动改进算法的性能。机器学习涵盖了更广泛的算法和技术,包括决策树、支持向量机、随机森林、聚类算法等,而深度学习则专注于神经网络和相关的优化技术。优缺点比较机器学习:优点:通用性:机器学习算法
- CUDA与CUDNN 关系
XF鸭
小知识caffe深度学习人工智能
CUDA与cuDNN1、什么是CUDACUDA(ComputeUnifiedDeviceArchitecture),是显卡厂商NVIDIA推出的运算平台。CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。2、什么是CUDNNNVIDIAcuDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开销。NVIDIAcuDNN可以集成到更高级别的机器学
- phaseDNN文章解读
凭轩听雨199407
神经网络
文章DOI:https://doi.org/10.48550/arXiv.1905.01389作者是SouthernMethodistUniversity的WeiCai教授AParallelPhaseShiftDeepNeuralNetworkforAdaptiveWidebandLearning一种并行移相深度神经网络来自适应学习宽带频率信号20190514核心思想:通过相变技术把高频部分转化为
- mongodb3.03开启认证
21jhf
mongodb
下载了最新mongodb3.03版本,当使用--auth 参数命令行开启mongodb用户认证时遇到很多问题,现总结如下:
(百度上搜到的基本都是老版本的,看到db.addUser的就是,请忽略)
Windows下我做了一个bat文件,用来启动mongodb,命令行如下:
mongod --dbpath db\data --port 27017 --directoryperdb --logp
- 【Spark103】Task not serializable
bit1129
Serializable
Task not serializable是Spark开发过程最令人头疼的问题之一,这里记录下出现这个问题的两个实例,一个是自己遇到的,另一个是stackoverflow上看到。等有时间了再仔细探究出现Task not serialiazable的各种原因以及出现问题后如何快速定位问题的所在,至少目前阶段碰到此类问题,没有什么章法
1.
package spark.exampl
- 你所熟知的 LRU(最近最少使用)
dalan_123
java
关于LRU这个名词在很多地方或听说,或使用,接下来看下lru缓存回收的实现
1、大体的想法
a、查询出最近最晚使用的项
b、给最近的使用的项做标记
通过使用链表就可以完成这两个操作,关于最近最少使用的项只需要返回链表的尾部;标记最近使用的项,只需要将该项移除并放置到头部,那么难点就出现 你如何能够快速在链表定位对应的该项?
这时候多
- Javascript 跨域
周凡杨
JavaScriptjsonp跨域cross-domain
 
- linux下安装apache服务器
g21121
apache
安装apache
下载windows版本apache,下载地址:http://httpd.apache.org/download.cgi
1.windows下安装apache
Windows下安装apache比较简单,注意选择路径和端口即可,这里就不再赘述了。 2.linux下安装apache:
下载之后上传到linux的相关目录,这里指定为/home/apach
- FineReport的JS编辑框和URL地址栏语法简介
老A不折腾
finereportweb报表报表软件语法总结
JS编辑框:
1.FineReport的js。
作为一款BS产品,browser端的JavaScript是必不可少的。
FineReport中的js是已经调用了finereport.js的。
大家知道,预览报表时,报表servlet会将cpt模板转为html,在这个html的head头部中会引入FineReport的js,这个finereport.js中包含了许多内置的fun
- 根据STATUS信息对MySQL进行优化
墙头上一根草
status
mysql 查看当前正在执行的操作,即正在执行的sql语句的方法为:
show processlist 命令
mysql> show global status;可以列出MySQL服务器运行各种状态值,我个人较喜欢的用法是show status like '查询值%';一、慢查询mysql> show variab
- 我的spring学习笔记7-Spring的Bean配置文件给Bean定义别名
aijuans
Spring 3
本文介绍如何给Spring的Bean配置文件的Bean定义别名?
原始的
<bean id="business" class="onlyfun.caterpillar.device.Business">
<property name="writer">
<ref b
- 高性能mysql 之 性能剖析
annan211
性能mysqlmysql 性能剖析剖析
1 定义性能优化
mysql服务器性能,此处定义为 响应时间。
在解释性能优化之前,先来消除一个误解,很多人认为,性能优化就是降低cpu的利用率或者减少对资源的使用。
这是一个陷阱。
资源时用来消耗并用来工作的,所以有时候消耗更多的资源能够加快查询速度,保持cpu忙绿,这是必要的。很多时候发现
编译进了新版本的InnoDB之后,cpu利用率上升的很厉害,这并不
- 主外键和索引唯一性约束
百合不是茶
索引唯一性约束主外键约束联机删除
目标;第一步;创建两张表 用户表和文章表
第二步;发表文章
1,建表;
---用户表 BlogUsers
--userID唯一的
--userName
--pwd
--sex
create
- 线程的调度
bijian1013
java多线程thread线程的调度java多线程
1. Java提供一个线程调度程序来监控程序中启动后进入可运行状态的所有线程。线程调度程序按照线程的优先级决定应调度哪些线程来执行。
2. 多数线程的调度是抢占式的(即我想中断程序运行就中断,不需要和将被中断的程序协商)
a) 
- 查看日志常用命令
bijian1013
linux命令unix
一.日志查找方法,可以用通配符查某台主机上的所有服务器grep "关键字" /wls/applogs/custom-*/error.log
二.查看日志常用命令1.grep '关键字' error.log:在error.log中搜索'关键字'2.grep -C10 '关键字' error.log:显示关键字前后10行记录3.grep '关键字' error.l
- 【持久化框架MyBatis3一】MyBatis版HelloWorld
bit1129
helloworld
MyBatis这个系列的文章,主要参考《Java Persistence with MyBatis 3》。
样例数据
本文以MySQL数据库为例,建立一个STUDENTS表,插入两条数据,然后进行单表的增删改查
CREATE TABLE STUDENTS
(
stud_id int(11) NOT NULL AUTO_INCREMENT,
- 【Hadoop十五】Hadoop Counter
bit1129
hadoop
1. 只有Map任务的Map Reduce Job
File System Counters
FILE: Number of bytes read=3629530
FILE: Number of bytes written=98312
FILE: Number of read operations=0
FILE: Number of lar
- 解决Tomcat数据连接池无法释放
ronin47
tomcat 连接池 优化
近段时间,公司的检测中心报表系统(SMC)的开发人员时不时找到我,说用户老是出现无法登录的情况。前些日子因为手头上 有Jboss集群的测试工作,发现用户不能登录时,都是在Tomcat中将这个项目Reload一下就好了,不过只是治标而已,因为大概几个小时之后又会 再次出现无法登录的情况。
今天上午,开发人员小毛又找到我,要我协助将这个问题根治一下,拖太久用户难保不投诉。
简单分析了一
- java-75-二叉树两结点的最低共同父结点
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import ljn.help.*;
public class BTreeLowestParentOfTwoNodes {
public static void main(String[] args) {
/*
* node data is stored in
- 行业垂直搜索引擎网页抓取项目
carlwu
LuceneNutchHeritrixSolr
公司有一个搜索引擎项目,希望各路高人有空来帮忙指导,谢谢!
这是详细需求:
(1) 通过提供的网站地址(大概100-200个网站),网页抓取程序能不断抓取网页和其它类型的文件(如Excel、PDF、Word、ppt及zip类型),并且程序能够根据事先提供的规则,过滤掉不相干的下载内容。
(2) 程序能够搜索这些抓取的内容,并能对这些抓取文件按照油田名进行分类,然后放到服务器不同的目录中。
- [通讯与服务]在总带宽资源没有大幅增加之前,不适宜大幅度降低资费
comsci
资源
降低通讯服务资费,就意味着有更多的用户进入,就意味着通讯服务提供商要接待和服务更多的用户,在总体运维成本没有由于技术升级而大幅下降的情况下,这种降低资费的行为将导致每个用户的平均带宽不断下降,而享受到的服务质量也在下降,这对用户和服务商都是不利的。。。。。。。。
&nbs
- Java时区转换及时间格式
Cwind
java
本文介绍Java API 中 Date, Calendar, TimeZone和DateFormat的使用,以及不同时区时间相互转化的方法和原理。
问题描述:
向处于不同时区的服务器发请求时需要考虑时区转换的问题。譬如,服务器位于东八区(北京时间,GMT+8:00),而身处东四区的用户想要查询当天的销售记录。则需把东四区的“今天”这个时间范围转换为服务器所在时区的时间范围。
- readonly,只读,不可用
dashuaifu
jsjspdisablereadOnlyreadOnly
readOnly 和 readonly 不同,在做js开发时一定要注意函数大小写和jsp黄线的警告!!!我就经历过这么一件事:
使用readOnly在某些浏览器或同一浏览器不同版本有的可以实现“只读”功能,有的就不行,而且函数readOnly有黄线警告!!!就这样被折磨了不短时间!!!(期间使用过disable函数,但是发现disable函数之后后台接收不到前台的的数据!!!)
- LABjs、RequireJS、SeaJS 介绍
dcj3sjt126com
jsWeb
LABjs 的核心是 LAB(Loading and Blocking):Loading 指异步并行加载,Blocking 是指同步等待执行。LABjs 通过优雅的语法(script 和 wait)实现了这两大特性,核心价值是性能优化。LABjs 是一个文件加载器。RequireJS 和 SeaJS 则是模块加载器,倡导的是一种模块化开发理念,核心价值是让 JavaScript 的模块化开发变得更
- [应用结构]入口脚本
dcj3sjt126com
PHPyii2
入口脚本
入口脚本是应用启动流程中的第一环,一个应用(不管是网页应用还是控制台应用)只有一个入口脚本。终端用户的请求通过入口脚本实例化应用并将将请求转发到应用。
Web 应用的入口脚本必须放在终端用户能够访问的目录下,通常命名为 index.php,也可以使用 Web 服务器能定位到的其他名称。
控制台应用的入口脚本一般在应用根目录下命名为 yii(后缀为.php),该文
- haoop shell命令
eksliang
hadoophadoop shell
cat
chgrp
chmod
chown
copyFromLocal
copyToLocal
cp
du
dus
expunge
get
getmerge
ls
lsr
mkdir
movefromLocal
mv
put
rm
rmr
setrep
stat
tail
test
text
- MultiStateView不同的状态下显示不同的界面
gundumw100
android
只要将指定的view放在该控件里面,可以该view在不同的状态下显示不同的界面,这对ListView很有用,比如加载界面,空白界面,错误界面。而且这些见面由你指定布局,非常灵活。
PS:ListView虽然可以设置一个EmptyView,但使用起来不方便,不灵活,有点累赘。
<com.kennyc.view.MultiStateView xmlns:android=&qu
- jQuery实现页面内锚点平滑跳转
ini
JavaScripthtmljqueryhtml5css
平时我们做导航滚动到内容都是通过锚点来做,刷的一下就直接跳到内容了,没有一丝的滚动效果,而且 url 链接最后会有“小尾巴”,就像#keleyi,今天我就介绍一款 jquery 做的滚动的特效,既可以设置滚动速度,又可以在 url 链接上没有“小尾巴”。
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/37.htmHTML文件代码:
&
- kafka offset迁移
kane_xie
kafka
在早前的kafka版本中(0.8.0),offset是被存储在zookeeper中的。
到当前版本(0.8.2)为止,kafka同时支持offset存储在zookeeper和offset manager(broker)中。
从官方的说明来看,未来offset的zookeeper存储将会被弃用。因此现有的基于kafka的项目如果今后计划保持更新的话,可以考虑在合适
- android > 搭建 cordova 环境
mft8899
android
1 , 安装 node.js
http://nodejs.org
node -v 查看版本
2, 安装 npm
可以先从 https://github.com/isaacs/npm/tags 下载 源码 解压到
- java封装的比较器,比较是否全相同,获取不同字段名字
qifeifei
非常实用的java比较器,贴上代码:
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import net.sf.json.JSONArray;
import net.sf.json.JSONObject;
import net.sf.json.JsonConfig;
i
- 记录一些函数用法
.Aky.
位运算PHP数据库函数IP
高手们照旧忽略。
想弄个全天朝IP段数据库,找了个今天最新更新的国内所有运营商IP段,copy到文件,用文件函数,字符串函数把玩下。分割出startIp和endIp这样格式写入.txt文件,直接用phpmyadmin导入.csv文件的形式导入。(生命在于折腾,也许你们觉得我傻X,直接下载人家弄好的导入不就可以,做自己的菜鸟,让别人去说吧)
当然用到了ip2long()函数把字符串转为整型数
- sublime text 3 rust
wudixiaotie
Sublime Text
1.sublime text 3 => install package => Rust
2.cd ~/.config/sublime-text-3/Packages
3.mkdir rust
4.git clone https://github.com/sp0/rust-style
5.cd rust-style
6.cargo build --release
7.ctrl