岭回归,Lasso——变量选择技术

本文内容主要基于炼数成金机器学习课程,并且LAR部分参考了文章Lasso算法学习。

解决多重共线性和变量选择的两种方法——岭回归(L2范数)&Lasso(L1范数)。

目录

1 多元线性回归的最小二乘解

2 岭回归

3 LASSO

4 LASSO的计算方法


1 多元线性回归的最小二乘解

岭回归,Lasso——变量选择技术_第1张图片

Q(β)是残差的平方和的向量化表示,求偏导后得到的解为最小二乘估计; 6.22式中矩阵的-1表示的是广义求逆(矩阵只有n*n才能求逆,广义求逆可以针对所有的矩阵)。

多元线性回归的几何意义:求最小的y-β1X1-β2X2……其实就是求向量y到平面β1X1+β2X2……的最短距离(垂直距离)。

出现以下两种情况时影响求解:

2 岭回归

岭回归,Lasso——变量选择技术_第2张图片

加入了一个扰动kI。

岭回归,Lasso——变量选择技术_第3张图片

3.41的最后一项称为惩罚函数,它和3.42描述的问题是一样的。

岭回归的几何意义:

RSS表示的是残差平方和。约束项βi的平方和≤t在集合中表示为一个圆柱(二维情况时),它与残差的交点就是(β1, β2)。如下图所示:

岭回归,Lasso——变量选择技术_第4张图片

画在一个切面图上:

岭回归,Lasso——变量选择技术_第5张图片

岭回归性质:

岭回归,Lasso——变量选择技术_第6张图片(最小二乘法是无偏估计)

岭回归,Lasso——变量选择技术_第7张图片

岭回归,Lasso——变量选择技术_第8张图片

岭回归,Lasso——变量选择技术_第9张图片

(岭回归比最小二乘法更能接近真值,虽然它平均上有偏差)

 

岭迹图可以用于判断多重共线性。

岭回归,Lasso——变量选择技术_第10张图片

岭回归,Lasso——变量选择技术_第11张图片

3 LASSO

岭回归,Lasso——变量选择技术_第12张图片

岭回归,Lasso——变量选择技术_第13张图片

(左上为岭回归,右下为LASSO)

岭回归,Lasso——变量选择技术_第14张图片

(左为LASSO,右为岭回归)

岭估计系数通常不会为0——椭圆不断扩大,会和圆相切交一点(即为岭估计系数)。这一点在圆周上的位置通常不会取到0(椭圆碰到坐标轴上的圆周上的点的概率很低->没有稀疏)。

对比岭回归,LASSO的约束条件用的是绝对值,在几何上解释为一个菱形。随着椭圆增大,椭圆与菱形突出的顶点相交的概率很大(即回归系数等于0),容易产生稀疏的结果

岭回归,Lasso——变量选择技术_第15张图片

岭回归,Lasso——变量选择技术_第16张图片(弹性网目前处理的效果最好)

4 LASSO的计算方法

最小角回归算法

岭回归,Lasso——变量选择技术_第17张图片

这里LSE指的是Least Squares Error。

算法过程:

 

在介绍LAR之前,先要说明一下有关相关系数的知识补:

岭回归,Lasso——变量选择技术_第18张图片


 

        r表示X,Y的相关性,r越高,X,Y就越相关,若X,Y是二维向量,就说明X,Y两个向量越接近(可以被互相表示)

通常情况下通过以下取值范围判断变量的。

相关系数     相关强度:

0.8-1.0     极强相关   

0.6-0.8     强相关                

0.4-0.6     中等程度相关                

0.2-0.4     弱相关              

0.0-0.2     极弱相关或无相关

 

如果这里我们假设Xi,Yi与,计算的结果为二维单位向量,再反观r的计算公式:

 岭回归,Lasso——变量选择技术_第19张图片
 

该手稿转自http://f.dataguru.cn/thread-448966-1-1.html(炼数成金),可以发现r最终就是X,Y标准化后的夹角余弦值。

 

所以夹角越小,cosθ就越大,越接近1,即表示相关系数越大。(也可以解释相关系数的取值范围[-1,1])

 

解释完相关系数,就让我们正式进入LAR的学习。

岭回归,Lasso——变量选择技术_第20张图片

1)r表示的是向量Y和Xi之间的残差向量

2)找到和Y向量夹角最小的向量Xi,记最初夹角为θ0(图中即角1)。Y与Xi的局部最小二乘解(即为Y到Xi的距离,图中的垂直虚线)。从原点出发,沿着Xi,向这个局部最小二乘解移动。随着移动,残差向量r会趋于图中的垂直虚线;最初的夹角1也渐渐变为夹角2,并不断趋于90°;Xi与r之间的相关系数不断减小,趋于0。

3)在这个变化的过程中,总有某一时刻,另一个变量Xj与r之间的相关系数,与Xi与r之间的相关系数一样大。这个时候我们就把Xj加入。Xj加入后,前进的方向要进行修正(不在沿着Xi了),修正为Xi与Xj夹角的角平分线方向(图中酒红色线,需先将Xj平移才能得到)。

4)重复3步骤,直到所有X分量都被包含。最终找到残差向量r与所有X之间相关系数都为0的点。

解释图:

岭回归,Lasso——变量选择技术_第21张图片
 

 

你可能感兴趣的:(机器学习)