Kera的应用模块Application提供了带有预训练权重的Keras模型,这些模型可以用来进行预测、特征提取和finetune
模型的预训练权重将下载到~/.keras/models/
并在载入模型时自动载入
应用于图像分类的模型,权重训练自ImageNet:
所有的这些模型(除了Xception)都兼容Theano和Tensorflow,并会自动基于~/.keras/keras.json
的Keras的图像维度进行自动设置。例如,如果你设置image_dim_ordering=tf
,则加载的模型将按照TensorFlow的维度顺序来构造,即“Width-Height-Depth”的顺序
应用于音乐自动标签(以Mel-spectrograms为输入)
from keras.applications.resnet50 import ResNet50
from keras.preprocessing import image
from keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np
model = ResNet50(weights='imagenet')
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=3)[0])
# Predicted: [(u'n02504013', u'Indian_elephant', 0.82658225), (u'n01871265', u'tusker', 0.1122357), (u'n02504458', u'African_elephant', 0.061040461)]
from keras.applications.vgg16 import VGG16
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input
import numpy as np
model = VGG16(weights='imagenet', include_top=False)
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
features = model.predict(x)
from keras.applications.vgg19 import VGG19
from keras.preprocessing import image
from keras.applications.vgg19 import preprocess_input
from keras.models import Model
import numpy as np
base_model = VGG19(weights='imagenet')
model = Model(input=base_model.input, output=base_model.get_layer('block4_pool').output)
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
block4_pool_features = model.predict(x)
from keras.applications.inception_v3 import InceptionV3
from keras.preprocessing import image
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D
from keras import backend as K
# create the base pre-trained model
base_model = InceptionV3(weights='imagenet', include_top=False)
# add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(1024, activation='relu')(x)
# and a logistic layer -- let's say we have 200 classes
predictions = Dense(200, activation='softmax')(x)
# this is the model we will train
model = Model(input=base_model.input, output=predictions)
# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional InceptionV3 layers
for layer in base_model.layers:
layer.trainable = False
# compile the model (should be done *after* setting layers to non-trainable)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
# train the model on the new data for a few epochs
model.fit_generator(...)
# at this point, the top layers are well trained and we can start fine-tuning
# convolutional layers from inception V3. We will freeze the bottom N layers
# and train the remaining top layers.
# let's visualize layer names and layer indices to see how many layers
# we should freeze:
for i, layer in enumerate(base_model.layers):
print(i, layer.name)
# we chose to train the top 2 inception blocks, i.e. we will freeze
# the first 172 layers and unfreeze the rest:
for layer in model.layers[:172]:
layer.trainable = False
for layer in model.layers[172:]:
layer.trainable = True
# we need to recompile the model for these modifications to take effect
# we use SGD with a low learning rate
from keras.optimizers import SGD
model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy')
# we train our model again (this time fine-tuning the top 2 inception blocks
# alongside the top Dense layers
model.fit_generator(...)
from keras.applications.inception_v3 import InceptionV3
from keras.layers import Input
# this could also be the output a different Keras model or layer
input_tensor = Input(shape=(224, 224, 3)) # this assumes K.image_dim_ordering() == 'tf'
model = InceptionV3(input_tensor=input_tensor, weights='imagenet', include_top=True)
Xception V1 模型, 权重由ImageNet训练而言
在ImageNet上,该模型取得了验证集top1 0.790和top5 0.945的正确率
注意,该模型目前仅能以TensorFlow为后端使用,由于它依赖于"SeparableConvolution"层,目前该模型只支持tf的维度顺序(width, height, channels)
默认输入图片大小为299x299
include_top=False
时才应指定该参数。input_shape须为长3的tuple,图片的宽和高不得小于71.Keras 模型对象
预训练权重由我们自己训练而来,基于MIT license发布
VGG16模型,权重由ImageNet训练而来
该模型再Theano和TensorFlow后端均可使用,并接受th和tf两种输入维度顺序
模型的默认输入尺寸时224x224
include_top=False
时才应指定该参数。input_shape须为长3的tuple,维度顺序依赖于image_dim_ordering
,图片的宽和高不得小于48.Keras 模型对象
预训练权重由牛津VGG组发布的预训练权重移植而来,基于Creative Commons Attribution License
该模型再Theano和TensorFlow后端均可使用,并接受th和tf两种输入维度顺序
模型的默认输入尺寸时224x224
include_top=False
时才应指定该参数。input_shape须为长3的tuple,维度顺序依赖于image_dim_ordering
,图片的宽和高不得小于48.Keras 模型对象
预训练权重由牛津VGG组发布的预训练权重移植而来,基于Creative Commons Attribution License
50层残差网络模型,权重训练自ImageNet
该模型再Theano和TensorFlow后端均可使用,并接受th和tf两种输入维度顺序
模型的默认输入尺寸时224x224
include_top=False
时才应指定该参数。input_shape须为长3的tuple,维度顺序依赖于image_dim_ordering
,图片的宽和高不得小于197.Keras 模型对象
预训练权重由Kaiming He发布的预训练权重移植而来,基于MIT License
该模型再Theano和TensorFlow后端均可使用,并接受th和tf两种输入维度顺序
模型的默认输入尺寸时299x299
include_top=False
时才应指定该参数。input_shape须为长3的tuple,其维度顺序依赖于所使用的image_dim_ordering
,图片的宽和高不得小于139.Keras 模型对象
预训练权重由我们自己训练而来,基于MIT License
Keras 模型对象
预训练权重由我们自己训练而来,基于MIT License
https://github.com/MoyanZitto/keras-cn/blob/master/docs/other/application.md~