- 网络神经架构的概念及其实际应用
2301_81121233
网络爬山算法近邻算法霍夫曼树剪枝哈希算法柔性数组
###网络神经架构的概念**网络神经架构(NeuralNetworkArchitecture)**是指用于构建和组织人工神经网络(ArtificialNeuralNetworks,ANN)的结构和方法。这些架构通常由多个层次的节点(神经元)组成,通过模拟人脑神经元之间的连接和信息传递方式,来处理复杂的数据输入并生成相应的输出。网络神经架构通常由以下几个部分组成:1.**输入层(InputLayer
- Spike Neural Network Introduction and Research Directions
Debug_Snail
SNNNeuralnetwork人工智能AIGC
1.SNNs是一类神经网络,其中的神经元通过脉冲(spikes)来传递信息,而不是像传统的人工神经网络中那样使用实数值激活。SNNs更接近生物学上的神经系统,因为生物神经元也是通过电信号脉冲来传递信息的。与传统神经网络相比,SNNs具有以下几个特点:更低的功耗-因为只在发生脉冲时才激活神经元,所以整体功耗会比传统神经网络低很多。这使得SNNs很适合应用在对功耗要求非常严格的场景,如边缘计算。时序编
- Python第十六课:深度学习入门 | 神经网络解密
程之编
Python全栈通关秘籍python神经网络青少年编程
本节目标理解生物神经元与人工神经网络的映射关系掌握激活函数与损失函数的核心作用使用Keras构建手写数字识别模型可视化神经网络的训练过程掌握防止过拟合的基础策略一、神经网络基础(大脑的数字化仿生)1.神经元对比生物神经元人工神经元树突接收信号输入层接收特征数据细胞体整合信号加权求和(∑(权重×输入)+偏置)轴突传递电信号激活函数处理输出2.核心组件解析激活函数:神经元的"开关"(如ReLU:max
- 【ShuQiHere】 解密诺奖得主:约翰·霍普菲尔德与人工神经网络的革命
ShuQiHere
机器学习深度学习
【ShuQiHere】目录引言:跨界的传奇科学家诺贝尔奖的背后:人工神经网络的崛起约翰·霍普菲尔德的开创性工作神经网络的寒冬与突破霍普菲尔德网络的工作原理代码示例:实现霍普菲尔德网络激活函数的出现与神经网络的复兴杰弗里·辛顿的扩展与影响人工神经网络的现实应用总结与未来展望互动时间:你的看法额外资源与延伸阅读引言:跨界的传奇科学家2024年,诺贝尔物理学奖首次颁给了计算机科学家!约翰·霍普菲尔德(
- 神经网络图像识别技术,神经网络如何识别图像
小浣熊的技术
神经网络机器学习深度学习
什么是神经网络神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法
- 人工神经网络的基本属性,神经网络四个基本属性
小浣熊的技术
神经网络机器学习深度学习
什么是神经网络神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法
- 深度学习笔记——神经网络
肆——
深度学习深度学习笔记神经网络人工智能python
本文为在拓尔思智能举办的训练营中学习内容的总结,部分内容摘自百度百科个人在这里推荐一个好用的软件,Trae,主要是免费。人工神经元是人工神经网络的基本单元。模拟生物神经元,人工神经元有1个或者多个输入(模拟多个树突或者多个神经元向该神经元传递神经冲动);对输入进行加权求和(模拟细胞体将神经信号进行积累和树突强度不同);对输入之和使用激活函数计算活性值(模拟细胞体产生兴奋或者抑制);输出活性值并传递
- 多层感知机 (Multilayer Perceptron, MLP)
ALGORITHM LOL
人工智能机器学习算法
多层感知机(MultilayerPerceptron,MLP)通俗易懂算法多层感知机(MultilayerPerceptron,MLP)是一种前馈人工神经网络。它的主要特点是由多层神经元(或节点)组成,包括至少一个隐藏层。MLP是监督学习的模型,常用于分类和回归问题。组成部分输入层(InputLayer):接收输入数据的特征。例如,如果我们有一个特征向量x=[x1,x2,…,xn]\mathbf{
- 建筑兔零基础人工智能自学记录34|深度学习与神经网络2
阿克兔
人工智能toto学习人工智能深度学习神经网络
1、人工神经网络ANN从生物课上学到的有关神经元、突触的生物神经网络,被模仿出了简化的人工神经网络(ANN,artificialneuralnetwork)。ANN结构为:输入层、隐藏层、输出层人工神经元:基于生物神经元的数学模型ANN过程:输入---加权求和---激活函数激活函数:类似生物神经元的阈值,达到阈值输出信号(‘神经网络的万能逼近定理’---两层以上神经网络可以逼近任意函数)2、深度学
- 图解前馈神经网络(FNN)
Zucker N
深度学习神经网络人工智能深度学习
目录编辑1.前馈神经网络介绍2.网络结构3.模型工作示例4.总结1.前馈神经网络介绍前馈神经网络(FeedforwardNeuralNetwork,FNN)是一种最简单、最经典的神经网络结构,它是人工神经网络的基础形式之一。前馈神经网络是一种信息只沿一个方向传播的神经网络。它由多个神经元(或称为节点)组成,这些神经元被组织成不同的层,包括输入层、隐藏层和输出层。信息从输入层开始,经过一层或多层隐藏
- 人工神经网络ANN入门学习笔记
cs_ning
ANN学习笔记学习笔记机器学习
研究生写论文需要,先快速学习了机器学习的内容,现在需要继续深入学习人工神经网络ANN的内容,以下是个人的学习笔记,欢迎交流、请多多指正!以下是参考的学习资料/网站/笔记来源(侵权删):【ANN回归预测】基于ANN实现多变量预测附Matlab代码_ann实现回归-CSDN博客ANN人工神经网络:从基础认知到现实理解-CSDN博客常用神经网络-ANN/CNN/RNN/GAN/Transformer_a
- 深度学习-123-综述之AI人工智能与DL深度学习简史1956到2024
皮皮冰燃
深度学习人工智能深度学习
文章目录1AI与深度学习的简史1.1人工智能的诞生(1956)1.2早期人工神经网络(1940-1960年代)1.3多层感知器MLP(1960年代)1.4反向传播(1970-1980年代)1.5第二次黑暗时代(1990-2000年代)1.6深度学习的复兴(21世纪末至今)1.6.1CNN卷积神经网络(1980-2010)1.6.2RNN递归神经网络(1986-2017)1.6.3Transform
- 深度学习模型的全面解析:技术进展、应用场景与未来趋势
阿尔法星球
深度学习与神经网络实战机器学习
1.深度学习模型概述1.1深度学习模型的定义与分类深度学习模型是基于人工神经网络的算法,它们通过模仿人脑的处理机制来学习数据中的复杂模式和特征。这些模型可以根据其结构和应用场景被分为不同的类别,包括但不限于卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)、生成对抗网络(GAN)和Transformer模型等。1.2深度学习模型的关键特点深度学习模型的关键特点在于其深度,即
- 深度学习模型:原理、架构与应用
一ge科研小菜菜
工具深度学习
深度学习(DeepLearning)是机器学习中的一个分支,基于人工神经网络的发展,尤其是多层神经网络的研究,使其在语音识别、图像处理、自然语言处理等领域取得了显著进展。深度学习的核心是通过大量数据的训练,学习到数据的内在结构和模式,并且具备自动从复杂的输入中提取特征的能力。本文将从深度学习的基本原理、常见模型、训练技巧、应用领域及其面临的挑战等方面进行详细探讨,帮助理解深度学习模型如何在现代科技
- 《大模型应用开发极简入门》随记
hoypte
人工智能
术语:自然语言处理(NLP)人工智能(AI)大预言模型(LLM)机器学习(ML)深度学习(DL)内容LLM概述ML算法被称为人工神经网络DL是ML的一个分支最先开始简单语言模型吗,例如:n-gram模型(通过词频来根据前面的词预测句子里下一个词---可能生成不连贯的词),为了提升性能引入循环神经网络(RNN)和长短期记忆(LSTM)网络---处理大量数据效率还是不行。Transformer架构架构
- OpenCV机器学习(1)人工神经网络 - 多层感知器类cv::ml::ANN_MLP
村北头的码农
OpenCVopencv机器学习人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::ml::ANN_MLP是OpenCV库中的一部分,用于实现人工神经网络-多层感知器(ArtificialNeuralNetwork-Multi-LayerPerceptron,ANN-MLP)。它提供了一种方式来创建和训练多层感知器模型,以解决分类、回归等
- 大脑神经网络与机器神经网络的区别
天机️灵韵
具身智能人工智能具身智能
大脑神经网络(生物神经网络)与机器神经网络(人工神经网络,ANN)虽然名称相似,但在结构、功能、学习机制等方面存在显著差异。以下是两者的主要区别:1.基础结构与组成大脑神经网络:由生物神经元(约860亿个)通过突触连接形成动态网络。神经元通过电化学信号(动作电位)和神经递质传递信息。具有高度的可塑性(突触可增强或削弱),支持终身学习和适应。网络结构复杂,包含分层(如大脑皮层)和并行处理机制。机器神
- 深度神经网络(Deep Neural Networks, DNNs)
CaiGuoHui1
dnn神经网络深度学习人工智能
引言(1)简介:什么是深度神经网络?深度神经网络(DeepNeuralNetworks,DNNs)是机器学习的一种复杂形式,属于广义的人工神经网络(ArtificialNeuralNetworks,ANNs)的范畴。它们设计用来模仿人类大脑的处理方式,通过多层(即“深度”)的神经元结构处理数据,从而解决各种复杂的数据驱动问题。这些网络通过多个隐藏层连接输入和输出层,每层都包含多个神经元,这些神经元
- 激活函数篇 03 —— ReLU、LeakyReLU、RandomizedLeakkyReLU、PReLU、ELU
Echo-Nie
机器学习机器学习人工智能
本篇文章收录于专栏【机器学习】以下是激活函数系列的相关的所有内容:一文搞懂激活函数在神经网络中的关键作用逻辑回归:Sigmoid函数在分类问题中的应用整流线性单位函数(RectifiedLinearUnit,ReLU),又称修正线性单元,是一种人工神经网络中常用的激活函数,通常指代以斜坡函数及其变种为代表的非线性函数。ReLU(x)=max(0,x)\text{ReLU}(x)=\max(0,x
- 神经网络Neural Networks概述
种花家的码农
神经网络学习笔记神经网络人工智能机器学习
人工智能(AI)是一类非常广泛的问题,它旨在通过计算机实现类似人类的智能。机器学习(ML)是解决人工智能问题的一个重要方法。深度学习(DL)则是机器学习的一个分支,它在很多领域突破了传统机器学习的瓶颈,将人工智能推向了新的高潮。深度学习是基于人工神经网络(ANN)技术的发展而不断突破和提升,推动了人工智能的发展。相对的另一领域是生物神经网络(BiologicalNeuralNetwork,BNN)
- 目前市场上深度学习简介及沿革发展
Allen-Steven
python相关应用深度学习人工智能
深度学习是人工智能和机器学习的重要分支,其模型种类繁多,涵盖多个领域,如计算机视觉、自然语言处理、语音识别等。以下是目前市场上主流的深度学习模型,以及它们的发展历史和逐步沿革。1.感知机(Perceptron)及其扩展发展历史1958年:感知机由FrankRosenblatt提出,这是最早的人工神经网络模型,旨在模拟生物神经网络。局限性:感知机无法处理线性不可分问题,这一问题由MarvinMins
- 机器学习,深度学习,神经网络,深度神经网络
武昌库里写JAVA
面试题汇总与解析java学习开发语言课程设计springboot
人工智能包含机器学习,机器学习包含深度学习(是其中比较重要的分支)。深度学习源自于人工神经网络的研究,但是并不完全等于传统神经网络。神经网络与深度神经网络的区别在于隐藏层级,通常两层或两层以上隐藏层的网络叫做深度神经网络。一般隐藏层越多,精确度越高。深度学习的算法又分很多种,比较典型的四种:卷积神经网络—CNN,循环神经网络—RNN,生成对抗网络—GANs,深度强化学习—RL。机器学习和深度学习的
- 深度学习:基础原理与实践
阿尔法星球
深度学习python人工智能
1.深度学习概述1.1定义与发展历程深度学习是机器学习的一个分支,它基于人工神经网络的学习算法,特别是那些具有多层(深层)结构的网络。深度学习模型能够自动从原始数据中提取复杂的特征,而不需要人为设计特征提取算法。定义:深度学习可以定义为使用深层神经网络进行学习的过程,这些网络由多个非线性的变换组成,能够学习数据的多层次表示。发展历程:深度学习的起源可以追溯到1943年WarrenSturgisMc
- 超实用的Python深度学习教程 - 基于TensorFlow和Keras框架(含实例及完整代码)
AI_DL_CODE
人工智能python深度学习tensorflow
一、深度学习概述(一)深度学习的定义与发展历程深度学习在当今的科技领域占据着极为重要的地位。它是人工智能的一个重要分支,其定义为通过构建具有很多层的神经网络模型,让计算机自动从大量数据中学习复杂模式的一种技术。深度学习的发展历程可谓波澜壮阔,早期它源于对人工神经网络的研究,从简单的感知机模型开始。在发展初期,由于计算资源的限制以及数据量的不足等因素,发展较为缓慢。然而,随着计算机技术的飞速发展,尤
- 前馈神经网络——最基本的神经网络架构
纠结哥_Shrek
神经网络人工智能深度学习
前馈神经网络(FeedforwardNeuralNetwork,FNN)是一种基本的人工神经网络类型,其结构简单,广泛应用于各种机器学习任务。它由多个层次组成,包括输入层、隐藏层和输出层。FNN中的每一层与下一层的神经元之间是完全连接的,但不同层之间的神经元不相互连接。FNN以其数据流动方式来命名——前馈,意味着信息从输入层开始,经过一系列的隐藏层,最终输出结果,不存在任何循环或反馈连接。与递归神
- python3+TensorFlow 2.x(四)反向传播
刀客123
python学习tensorflow人工智能python
目录反向传播算法反向传播算法基本步骤:反向中的参数变化总结反向传播算法反向传播算法(Backpropagation)是训练人工神经网络时使用的一个重要算法,它是通过计算梯度并优化神经网络的权重来最小化误差。反向传播算法的核心是基于链式法则的梯度下降优化方法,通过计算误差对每个权重的偏导数来更新网络中的参数。反向传播算法基本步骤:前向传播:将输入数据传递通过神经网络的各层,计算每一层的输出。计算损失
- #深度学习:从基础到实践
single_ffish
深度学习gpt神经网络生成对抗网络1024程序员节
深度学习是人工智能领域近年来最为火热的技术之一。它通过构建由多个隐藏层组成的神经网络模型,能够从海量数据中自动学习特征和表征,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。本文将全面介绍深度学习的基础知识、主要算法和实践应用,帮助您快速掌握这一前沿技术。1.深度学习的基础1.1人工神经网络深度学习是基于人工神经网络(ArtificialNeuralNetwork,ANN)的一种机器学习
- 人工智能前沿技术进展与应用前景探究
戒了9
人工智能搜索引擎百度
一、引言1.1研究背景与意义人工智能作为一门极具变革性的前沿技术,正深刻地改变着人类社会的各个层面。从其诞生之初,人工智能便承载着人类对智能机器的无限遐想与探索。自20世纪中叶起,人工智能踏上了它的发展征程,历经了多个重要阶段,每一阶段都伴随着理论的突破、技术的革新以及应用领域的拓展。在初级阶段(1943-1956),沃伦・麦卡洛克和沃尔特・皮茨提出的人工神经网络基本模型,为人工智能的发展奠定了初
- 人工智能前沿技术进展与应用前景探究
戒了9
搜索引擎
一、引言1.1研究背景与意义人工智能作为一门极具变革性的前沿技术,正深刻地改变着人类社会的各个层面。从其诞生之初,人工智能便承载着人类对智能机器的无限遐想与探索。自20世纪中叶起,人工智能踏上了它的发展征程,历经了多个重要阶段,每一阶段都伴随着理论的突破、技术的革新以及应用领域的拓展。在初级阶段(1943-1956),沃伦・麦卡洛克和沃尔特・皮茨提出的人工神经网络基本模型,为人工智能的发展奠定了初
- 一、深度学习的基本介绍
关关钧
深度学习深度学习人工智能神经网络
机器学习的基本步骤:前馈运算、反向传播计算梯度、根据梯度更新参数值。一、定义及基本概念深度学习,就是一种利用深度人工神经网络来进行自动分类、预测和学习的技术。它可以从海量的数据中自动学习,找寻数据中的特征。所以说,它的本质就是自动提取特征的能力。可以说,深度学习就等于深度人工神经网络。一般认为超过三层的神经网络就可以叫做深度神经网络。深度学习属于一种特殊的人工智能技术。反向传播算法:此算法是人工神
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23