人脸识别之人脸检测(三)--Haar特征原理及实现

本文主要由于OpenCV的haartraining程序,对haar特征的补充及代码注释。

原文:http://www.aiuxian.com/article/p-2476165.html

Haar特征的原理是什么?

 

Haar特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩形像素和(在opencv实现中为黑色-白色)。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。但矩形特征只对一些简单的图形结构,如边缘、线段较敏感,所以只能描述特定走向(水平、垂直、对角)的结构。(本段文字及下面两幅图引用自http://www.aiuxian.com/article/p-1897852.html)

Viola提出的haar特征:

 

图片分享:

 

 

 

Lienhart等牛们提出的Haar-like特征:

 

图片分享:

 

 

 

矩形特征可位于图像任意位置,大小也可以任意改变,所以矩形特征值是矩形模版类别、矩形位置和矩形大小这三个因素的函数,当然对于新提出的有旋转角度的haar特征,还要把旋转的因素考虑进去。

所以一个Haar特征的数据结构应该包含以下内容: 

*haar特征模板类型

*是否有旋转

*矩阵位置及大小

 

CvIntHaarFeatures是如何构成的?

在Opencv中,我们用CvTHaarFeature和CvFastHaarFeature作为描述单个特征的数据结构,用CvIntHaarFeatures作为一个封装的类型,通过这个类型中的两个指针(分别是CvTHaarFeature*和CvFastHaarFeature*指针)可以间接遍寻到存储的所有的特征。下面来看下它们的具体构造


 

 

 

CvTHaarFeature的数据结构:

//CvTHaarFeature:由(至多三个)矩形表示特征位置

typedef struct CvTHaarFeature

{

    char desc[CV_HAAR_FEATURE_DESC_MAX];   //描述haar特征模板类型的变量

    int  tilted; //标识是否有旋转,通过desc字符数组开头是否为tilted判断

    struct

    {

        CvRect r;

        float weight;

    } rect[CV_HAAR_FEATURE_MAX];            //三个矩形来描述特征位置

} CvTHaarFeature;

 

 

创建一个CvTHaarFeature特征:

/*例:haarFeature = cvHaarFeature("tilted_haar_y2",

                                    x, y, dx,2*dy, -1,

                                    x, y,dx,   dy, +2 );*/

CV_INLINECvTHaarFeature cvHaarFeature(constchar* desc,

                            int x0, int y0, int w0,int h0,float wt0,

                            int x1, int y1, int w1,int h1,float wt1,

                            int x2, int y2, int w2,int h2,float wt2 )

{

    CvTHaarFeature hf;

 

    assert( CV_HAAR_FEATURE_MAX >= 3 );

    assert( strlen( desc )

 

    strcpy( &(hf.desc[0]), desc );

    hf.tilted = ( hf.desc[0] == 't' );

 

    hf.rect[0].r.x = x0;

    hf.rect[0].r.y = y0;

    hf.rect[0].r.width  = w0;

    hf.rect[0].r.height = h0;

    hf.rect[0].weight   = wt0;

 

    hf.rect[1].r.x = x1;

    hf.rect[1].r.y = y1;

    hf.rect[1].r.width  = w1;

    hf.rect[1].r.height = h1;

    hf.rect[1].weight   = wt1;

 

    hf.rect[2].r.x = x2;

    hf.rect[2].r.y = y2;

    hf.rect[2].r.width  = w2;

    hf.rect[2].r.height = h2;

    hf.rect[2].weight   = wt2;

 

    return hf;

}

 

 

CvFastHaarFeature的数据结构:

//与CvTHaarFeature类似,不同的是通过4个点来描述特征矩形的位置大小信息

typedef struct CvFastHaarFeature

{

    int tilted;

    struct

    {

        int p0, p1, p2, p3;

        float weight;

    } rect[CV_HAAR_FEATURE_MAX];

} CvFastHaarFeature;

 

CvIntHaarFeatures的数据结构:

typedef struct CvIntHaarFeatures

{

    CvSize winsize;

    int count;

    CvTHaarFeature* feature;

    CvFastHaarFeature* fastfeature;

} CvIntHaarFeatures;


 

了解了如何构成,我们就来创建,icvCreateIntHaarFeatures()方法的具体实现:

 

接下来就是最重要的一步,如何创建我们想要得到的所有特征信息及CvIntHaarFeatures,下面是icvCreateIntHaarFeatures方法的具体实现和详细注释

由于opencv和C++都是初学,用了很长时间写了大量注释,0基础也绝对能看懂,希望能对大家有帮助

 

 
 

/*

* icvCreateIntHaarFeatures

*

* Create internal representation of haar features

*

* mode:

* 0 - BASIC = Viola提出的原始举行特征

* 1 - CORE = All upright 所有垂直的haar特征

* 2 - ALL = All features 所有haar特征

*symmetric: 目标图形是否为垂直对称

*/

static

CvIntHaarFeatures* icvCreateIntHaarFeatures( CvSize winsize,

int mode,

int symmetric )

{

CvIntHaarFeatures* features = NULL;

CvTHaarFeature haarFeature;

/*内存存储器是一个可用来存储诸如序列,轮廓,图形,子划分等动态增长数据结构的底层结构。它是由一系列以同等大小的内存块构成,呈列表型*/

CvMemStorage* storage = NULL;

CvSeq* seq = NULL;

CvSeqWriter writer;

int s0 = 36; /* minimum total area size of basic haar feature */

int s1 = 12; /* minimum total area size of tilted(倾斜的) haar features 2 */

int s2 = 18; /* minimum total area size of tilted haar features 3 */

int s3 = 24; /* minimum total area size of tilted haar features 4 */

int x = 0;

int y = 0;

int dx = 0;

int dy = 0;

#if 0

float factor = 1.0F;

factor = ((float) winsize.width) * winsize.height / (24 * 24);

s0 = (int) (s0 * factor);

s1 = (int) (s1 * factor);

s2 = (int) (s2 * factor);

s3 = (int) (s3 * factor);

#else

//程序必然走这边,为什么这么写?

s0 = 1;

s1 = 1;

s2 = 1;

s3 = 1;

#endif

/* CV_VECTOR_CREATE( vec, CvIntHaarFeature, size, maxsize ) */

storage = cvCreateMemStorage();

//功能:创建新序列,并初始化写入部分

/*我的理解:这里其实是定义了writer工具每次写入数据的大小,以及写入到哪个内存存储器

在之后调用 CV_WRITE_SEQ_ELEM( haarFeature, writer )时就可以自动将一个haarFeature类型的数据写入内存存储器中*/

cvStartWriteSeq( 0, sizeof( CvSeq ), sizeof( haarFeature ), storage, &writer );

/*矩形特征可位于图像任意位置,大小也可以任意改变,所以矩形特征值是矩形模版类别、矩形位置和矩形大小这三个因素的函数*/

for( x = 0; x < winsize.width; x++ )

{

for( y = 0; y < winsize.height; y++ )

{

//x,y确定了特征矩形的左上角坐标

for( dx = 1; dx <= winsize.width; dx++ )

{

for( dy = 1; dy <= winsize.height; dy++ )

{

//dx,dy确定了特征矩形的大小

//下面需要按照不同的特征模板类型分别讨论,在模板不越界的情况下,添

加该特征

// haar_x2 对应上图中的(a)特征模板,黑色为+,白色为-

if ( (x+dx*2 <= winsize.width) && (y+dy <= winsize.height) ) {

if (dx*2*dy < s0) continue;

if (!symmetric || (x+x+dx*2 <=winsize.width))

{

//目标图像不为垂直对称或目标垂直对称但满足上式条件

//若目标不垂直对称,显然要计算当前矩形特征的特征值

//若对称,则只计算左半部分全部位于标准样本左半边的矩形特征的特征值

haarFeature = cvHaarFeature( "haar_x2",

x, y, dx*2, dy, -1,

x+dx, y, dx , dy, +2 );

/* CV_VECTOR_PUSH( vec, CvIntHaarFeature, haarFeature, size, maxsize, step ) */

CV_WRITE_SEQ_ELEM( haarFeature, writer );

}

}

// haar_y2 对应上图中的(b)特征模板

if ( (x+dx <= winsize.width) && (y+dy*2 <= winsize.height) ) {

if (dx*2*dy < s0) continue;

if (!symmetric || (x+x+dx <= winsize.width)) {

haarFeature = cvHaarFeature( "haar_y2",

x, y, dx, dy*2, -1,

x, y+dy, dx, dy, +2 );

CV_WRITE_SEQ_ELEM( haarFeature, writer );

}

}

// haar_x3 对应上图中的(c)特征模板

if ( (x+dx*3 <= winsize.width) && (y+dy <= winsize.height) ) {

if (dx*3*dy < s0) continue;

if (!symmetric || (x+x+dx*3 <=winsize.width)) {

haarFeature = cvHaarFeature( "haar_x3",

x, y, dx*3, dy, -1,

x+dx, y, dx, dy, +3 );

CV_WRITE_SEQ_ELEM( haarFeature, writer );

}

}

// haar_y3 对应上图中的(d)特征模板

if ( (x+dx <= winsize.width) && (y+dy*3 <= winsize.height) ) {

if (dx*3*dy < s0) continue;

if (!symmetric || (x+x+dx <= winsize.width)) {

haarFeature = cvHaarFeature( "haar_y3",

x, y, dx, dy*3, -1,

x, y+dy, dx, dy, +3 );

CV_WRITE_SEQ_ELEM( haarFeature, writer );

}

}

if( mode != 0 /*BASIC*/ ) {

// haar_x4 对应上图中的(2b)特征模板

if ( (x+dx*4 <= winsize.width) && (y+dy <= winsize.height) ) {

if (dx*4*dy < s0) continue;

if (!symmetric || (x+x+dx*4 <=winsize.width)) {

haarFeature = cvHaarFeature( "haar_x4",

x, y, dx*4, dy, -1,

x+dx, y, dx*2, dy, +2 );

CV_WRITE_SEQ_ELEM( haarFeature, writer );

}

}

// haar_y4 对应上图中的(2d)特征模板

if ( (x+dx <= winsize.width ) && (y+dy*4 <= winsize.height) ) {

if (dx*4*dy < s0) continue;

if (!symmetric || (x+x+dx <=winsize.width)) {

haarFeature = cvHaarFeature( "haar_y4",

x, y, dx, dy*4, -1,

x, y+dy, dx, dy*2, +2 );

CV_WRITE_SEQ_ELEM( haarFeature, writer );

}

}

}

// x2_y2 对应上图中的(e)特征模板

if ( (x+dx*2 <= winsize.width) && (y+dy*2 <= winsize.height) ) {

if (dx*4*dy < s0) continue;

if (!symmetric || (x+x+dx*2 <=winsize.width)) {

haarFeature = cvHaarFeature( "haar_x2_y2",

x , y, dx*2, dy*2, -1,

x , y , dx , dy, +2,

x+dx, y+dy, dx , dy, +2 );

CV_WRITE_SEQ_ELEM( haarFeature, writer );

}

}

if (mode != 0 /*BASIC*/) {

// point 对应上图中的(3a)特征模板

if ( (x+dx*3 <= winsize.width) && (y+dy*3 <= winsize.height) ) {

if (dx*9*dy < s0) continue;

if (!symmetric || (x+x+dx*3 <=winsize.width)) {

haarFeature = cvHaarFeature( "haar_point",

x , y, dx*3, dy*3, -1,

x+dx, y+dy, dx , dy , +9);

CV_WRITE_SEQ_ELEM( haarFeature, writer );

}

}

}

if (mode == 2 /*ALL*/) {

// tilted haar_x2 (x, y, w, h, b, weight)

//对应上图中的(1c)特征模板

if ( (x+2*dx <= winsize.width) && (y+2*dx+dy <= winsize.height) && (x-dy>= 0) ) {

if (dx*2*dy < s1) continue;

if (!symmetric || (x <= (winsize.width / 2) )) {

haarFeature = cvHaarFeature( "tilted_haar_x2",

x, y, dx*2, dy, -1,

x, y, dx , dy, +2 );

CV_WRITE_SEQ_ELEM( haarFeature, writer );

}

}

// tilted haar_y2 (x, y, w, h, b, weight)

//对应上图中的(1d)特征模板

if ( (x+dx <= winsize.width) && (y+dx+2*dy <= winsize.height) && (x-2*dy>= 0) ) {

if (dx*2*dy < s1) continue;

if (!symmetric || (x <= (winsize.width / 2) )) {

haarFeature = cvHaarFeature( "tilted_haar_y2",

x, y, dx, 2*dy, -1,

x, y, dx, dy, +2 );

CV_WRITE_SEQ_ELEM( haarFeature, writer );

}

}

// tilted haar_x3 (x, y, w, h, b, weight)

if ( (x+3*dx <= winsize.width) && (y+3*dx+dy <= winsize.height) && (x-dy>= 0) ) {

if (dx*3*dy < s2) continue;

if (!symmetric || (x <= (winsize.width / 2) )) {

haarFeature = cvHaarFeature( "tilted_haar_x3",

x, y, dx*3, dy, -1,

x+dx, y+dx, dx , dy, +3 );

CV_WRITE_SEQ_ELEM( haarFeature, writer );

}

}

// tilted haar_y3 (x, y, w, h, b, weight)

if ( (x+dx <= winsize.width) && (y+dx+3*dy <= winsize.height) && (x-3*dy>= 0) ) {

if (dx*3*dy < s2) continue;

if (!symmetric || (x <= (winsize.width / 2) )) {

haarFeature = cvHaarFeature( "tilted_haar_y3",

x, y, dx, 3*dy, -1,

x-dy, y+dy, dx, dy, +3 );

CV_WRITE_SEQ_ELEM( haarFeature, writer );

}

}

// tilted haar_x4 (x, y, w, h, b, weight)

if ( (x+4*dx <= winsize.width) && (y+4*dx+dy <= winsize.height) && (x-dy>= 0) ) {

if (dx*4*dy < s3) continue;

if (!symmetric || (x <= (winsize.width / 2) )) {

haarFeature = cvHaarFeature( "tilted_haar_x4",

x, y, dx*4, dy, -1,

x+dx, y+dx, dx*2, dy, +2 );

CV_WRITE_SEQ_ELEM( haarFeature, writer );

}

}

// tilted haar_y4 (x, y, w, h, b, weight)

if ( (x+dx <= winsize.width) && (y+dx+4*dy <= winsize.height) && (x-4*dy>= 0) ) {

if (dx*4*dy < s3) continue;

if (!symmetric || (x <= (winsize.width / 2) )) {

haarFeature = cvHaarFeature( "tilted_haar_y4",

x, y, dx, 4*dy, -1,

x-dy, y+dy, dx, 2*dy, +2 );

CV_WRITE_SEQ_ELEM( haarFeature, writer );

}

}

/*

// tilted point

if ( (x+dx*3 <= winsize.width - 1) && (y+dy*3 <= winsize.height - 1) && (x-3*dy>= 0)) {

if (dx*9*dy < 36) continue;

if (!symmetric || (x <= (winsize.width / 2) )) {

haarFeature = cvHaarFeature( "tilted_haar_point",

x, y, dx*3, dy*3, -1,

x, y+dy, dx , dy, +9 );

CV_WRITE_SEQ_ELEM( haarFeature, writer );

}

}

*/

}

}

}

}

}

/*我的理解:当前已经完成了数据的写入,但是是存储在内存存储器中的,调用此方法将存储器中的所有数据转移到cvSeq中*/

seq = cvEndWriteSeq( &writer );

在OpenCV中临时缓存用cvAlloc和cvFree函数分配和回收.函数应注意适当对齐,对未释放的内存保持跟踪,检查溢出。

features = (CvIntHaarFeatures*) cvAlloc( sizeof( CvIntHaarFeatures ) +

( sizeof( CvTHaarFeature ) + sizeof( CvFastHaarFeature ) ) * seq->total );

features->feature = (CvTHaarFeature*) (features + 1);

features->fastfeature = (CvFastHaarFeature*) ( features->feature + seq->total );

features->count = seq->total;

features->winsize = winsize;

cvCvtSeqToArray( seq, (CvArr*) features->feature );

cvReleaseMemStorage( &storage );

//特征的rect由坐标表示转换为由像素索引表示

icvConvertToFastHaarFeature( features->feature, features->fastfeature,

features->count, (winsize.width + 1) );

return features;

}

 

这边有一个新版分类器harr特征训练的解释。

http://blog.csdn.net/beerbuddys/article/details/40712957

你可能感兴趣的:(人脸检测)