这里慢慢记录一些自己使用的心得,
看一下配置文件
image_resizer: 将图片缩放到指定的高度宽度大小,图片缩放后尺寸越小速度要快,长宽的值是2的指数,长宽的比是1:1的情况下效果好像比较好,试了一下长宽比太大或者太小效果不太理想
model {
ssd {
num_classes: 90
image_resizer {
fixed_shape_resizer {
height: 64
width: 128
}
}
feature_extractor {
type: "ssd_mobilenet_v1_fpn"
depth_multiplier: 1.0
min_depth: 4
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.99999989895e-05
}
}
initializer {
random_normal_initializer {
mean: 0.0
stddev: 0.00999999977648
}
}
activation: RELU_6
batch_norm {
decay: 0.996999979019
scale: true
epsilon: 0.0010000000475
}
}
override_base_feature_extractor_hyperparams: true
}
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.99999989895e-05
}
}
initializer {
random_normal_initializer {
mean: 0.0
stddev: 0.00999999977648
}
}
activation: RELU_6
batch_norm {
decay: 0.996999979019
scale: true
epsilon: 0.0010000000475
}
}
depth: 256
num_layers_before_predictor: 4
kernel_size: 3
class_prediction_bias_init: -4.59999990463
}
}
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
scales_per_octave: 2
}
}
post_processing {
batch_non_max_suppression {
score_threshold: 0.300000011921
iou_threshold: 0.600000023842
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
normalize_loss_by_num_matches: true
loss {
localization_loss {
weighted_smooth_l1 {
}
}
classification_loss {
weighted_sigmoid_focal {
gamma: 2.0
alpha: 0.25
}
}
classification_weight: 1.0
localization_weight: 1.0
}
encode_background_as_zeros: true
normalize_loc_loss_by_codesize: true
inplace_batchnorm_update: true
freeze_batchnorm: false
}
}
train_config {
batch_size: 128
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_crop_image {
min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect_ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap_thresh: 0.0
}
}
sync_replicas: false
optimizer {
momentum_optimizer {
learning_rate {
cosine_decay_learning_rate {
learning_rate_base: 0.0799999982119
total_steps: 12500
warmup_learning_rate: 0.0266660004854
warmup_steps: 1000
}
}
momentum_optimizer_value: 0.899999976158
}
use_moving_average: false
}
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
num_steps: 12500
startup_delay_steps: 0.0
replicas_to_aggregate: 1
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader {
label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record-00000-of-00100"
}
}
eval_config {
num_examples: 8000
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader {
label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
shuffle: false
num_readers: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record-00000-of-00010"
}
}