【智能安防】人像态势识别及其在智能视频监控中的应用

来源:警用科技


安防已经成为人工智能落地场景中的重要赛道,其涉及的智能视频分析、人脸识别等关键技术也在研究领域受到了极大的关注。那么安防领域中涉及的人脸识别有何痛点?人工智能+安防的未来又有哪些新的趋势?


【智能安防】人像态势识别及其在智能视频监控中的应用_第1张图片


10月29日,清华大学媒体大数据认知计算研究中心主任王生进教授在2017年第十六届中国国际公共安全博览会(CPSE安博会)政府管理论坛上发表了题为《人像态势识别及其在智能视频监控中的应用》的演讲,他指出,目前我国视频监控建设卓有成效,摄像头的数量惊人,达到了2000多万个。如此大量级的数据只依靠人工监控已经无法实现大规模视频监控,急需人工智能以及智能分析技术有效的技术支撑。


王生进教授从三个方面阐述了人脸识别在安防中的应用:1、新一代人工智能发展与智能安防;2、人脸识别技术与应用系统;3、以人为中心的安防理念与人像态视识别。



一、新一代人工智能发展与智能安防



当前,世界范围内公共安全面临严峻情势,是国际上关注的重大课题,信息内容与情报成为掌控局势的关键要素。面向大数据背景下国家公共安全保障是重大的国家的需求。聚焦公共安全、平安城市、视频监控、网络安全的需求,以安防视频大数据,及网络空间各种视频、图像、语音、网络信息为大数据基础,创新人工智能和机器学习理论,构建公共安全大数据应用技术创新平台是我们工作的重点。


我们现在面向的空间主要有两个。


第一面向物理空间安全:全国平安城市建设视频监控前端数量已超过2000万。目标感知能力不足,大数据给公共安全事件即时感知、精确分析、快速搜索带来巨大困难,急需人工智能技术支撑。


第二面向网络空间安全:网络空间富媒体通信的引入,带来新型媒体信息管控难题,国家急需大数据环境下富媒体内容感知、网络信息安全、网络多媒体内容监测的支撑技术。


十二五期间,全国600大中城市视频采集系统建设已初具规模,监控系统26.8万余个(2009),安装摄像头2000万余个(2013)。按每个摄像头每天约7.2GB (0.3G(CIF)*24)的数据量,北京市摄像头40余万个(2011),每天产生的数据量为 2800TB,数据量巨大。


在这样大量的数据下,依赖人工监控,智能化程度低,无法实现大规模视频监控环境下的事前感知、事中联动、事后有效处理及智能检索。急需人工智能以及智能分析的技术,在视频监控里能够提供有效的技术的支撑。


2017年7月8日,国务院发布新一代人工智能发展规划(国发〔2017〕35号)。人工智能成为国际竞争的新焦点,是引领未来的战略性技术;人工智能成为经济发展的新引擎,作为新一轮产业变革的核心驱动力;人工智能带来社会建设的新机遇,将深刻改变人类社会生活、改变世界。抢抓人工智能发展的重大战略机遇,构筑我国人工智能发展的先发优势,加快建设创新型国家和世界科技强国。


根据这个核心,《规划》里提出利用人工智能提升公共安全保障能力的规划和要求。


第一促进人工智能在公共安全领域的深度应用,推动构建公共安全智能化监测预警与控制体系。


第二围绕社会综合治理、新型犯罪侦查、反恐等迫切需求,研发集成多种探测传感技术、视频图像信息分析识别技术、生物特征识别技术的智能安防与警用产品,建立智能化监测平台。


第三加强对重点公共区域安防设备的智能化改造升级,支持有条件的社区或城市开展基于人工智能的公共安防区域示范。


在智能视频分析关键技术方面,我简单列了相关的关键技术:



1、侵入/越界检测
2、遗留物体事件检测
3、拿走物体事件检测
4、徘徊检测
5、行人/车辆检测、跟踪
6、人脸(人像)/行人/车牌识别
7、人群密度监测
8、异常行为(奔跑打架斗殴)检测
9、视频质量诊断
10、视频浓缩与摘要
11、视频内容快速检索
12、图像增强与复原技术



人脸识别技术应用方面,根据实际应用场景,人脸识别可以分为如下3类:


第一、有配合人脸识别。分认证和查询,通常应用在证件照人脸,声明我是A,然后将A的模板人脸图像和现场采集的A的人脸图像进行比对,给出Yes or No,或查询大库。通常要求配合。


第二、半配合人脸识别也分认证和查询。通常应用在受限的通道、卡口,进行黑/白名单比对。该类应用通常光照稳定,不要求配合。


第三、非配合人脸识别。查询为主,通常应用在视频监控的动态布控场合,进行黑名单查询。该类应用光照复杂,姿态不确定,难度大。


清华人脸识别技术——人证合一验证通关应用:2005年,由公安部出入境管理局主持集成清华大学人脸技术,世界上首次在我国出入境旅客最多的深圳罗湖口岸开通“旅客自助查验通道” ,日均出入境人数在数十万以上。已推广到深圳、珠海两个地区的边检口岸共已开通了近400条自助通道,近300万旅客,验放旅客超过数亿人次,通过率98%,成为世界人脸识别技术大规模成功应用的范例。



二、人脸识别技术与应用系统



人脸识别技术通过采用摄像机或摄像头,采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关处理技术,通常包括:人脸检测、人脸跟踪、人脸五官定位、人脸归一化、特征提取、分类器训练和比对匹配,以达到识别不同人身份的目的。被广泛地应用在安全、认证等身份鉴别领域,因而被誉为”21世纪十大影响人类生活“的革命性技术。


人脸识别从应用上一般分为人脸检测,人脸五官定位,1:1人脸识别,1:N人脸识别,M:N动态布控。人脸检测与五官定位应用方向:客流量统计,视频检索等。智能贴图,智能美妆美颜,变脸特效等:


1:1人脸识别应用方向是指身份证人脸认证系统,社保人脸识别。


1:N人脸识别应用方向是指身份证照片查重,护照照片查重。比如你现在要做一个护照,你是张三,公安部门会到人口库里面查一下,看你会不会是顶替,也就是一人多证。


M:N人脸识别应用方向是指动态监控,黑名单监控,VIP客户管理系统,校园人脸识别系统,智能楼宇。


人脸识别技术,近两年发展非常迅速。基于机器学习的人脸识别方法方面,人脸识别方法总体上可分为三大类:


一是基于统计的识别方法,主要包括特征脸(Eigenface)方法、隐马尔科夫模型方法、子空间法等;


二是基于网络连接机制的识别方法,包括人工神经网络(ANN)方法和弹性图匹配方法等;


三是几何特征方法和三维模型等一些其他的综合方法



1.人脸识别核心课题



人脸识别的过程:令x 为一个待识别的人脸输入,F(x)为一个分类器函数,y 是关于x 的类别标签输出。人脸识别的关键,是获得高性能的F函数。传统的人脸识别的方法(Deep Learning以前): F分类器函数的构建,主要是分步处理、人工设计的。


基于统计学习的人脸识别方法得到了广泛的应用。人脸识别当前遇到的主要困难包括:



人脸面部结构的相似性
人脸的姿态变化
人脸的表情变化
复杂环境的光照变化
人脸的饰物遮挡
人脸的年龄变化



以上问题给人脸识别带来了相当大的挑战。随着深度学习的发展,我们遇到的困难得到了解决。



2.人工智能新浪潮的关键技术——深度学习



人工神经网络是一种端到端的机器学习方法(全步骤一次性学习)。端到端的学习方法一出现给人工智能带来了巨大的推动,应用在AlphaGo,图像识别,语音识别,无人驾驶,VR/AR,智能交通,智能视频,智慧医疗,智能制造。



3.人脸识别关键技术



1)人脸检测:判断输入图像中是否存在人脸;如果存在人脸,返回人脸所在的位置。


2)关键点定位:确定人脸中眼角、鼻尖和嘴角等关键点所在的位置,为人脸的对齐和归一化做准备。


3)人脸归一化:根据关键点的位置,采用相似变换,将人脸对齐到标准脸关键点,并裁剪成统一大小。


4)特征提取:利用海量数据,训练卷积神经网络;将人脸图像表示成具有高层语义信息的特征向量。


5)特征比对:主要是利用Metric Learning等技术,进一步提升识别准确率。



4.人脸检测技术



(1)基于A CNN Cascade for FaceDetection框架。一共6个CNN,3个detection-net用于判断输入的区域是否是人;3个calibration-net对输入的人脸框进行校正,得到更加准确的人脸框。检测过程中采用NMS消除高度重叠的窗口。


(2)人脸识别网络。针对不同人脸识别场景,设计了多种网络架构,以适应不同场景(速度、精度)的要求。图是我设计的一个网络,左边的网络具有速度快的特点,仅需要5毫秒的CPU时间,在LFW上的识别准确率为97.28%,主要用于对实时性要求高的场景。右边的网络,RES-FaceNet,一共包含26个卷积层,5个max-pooling和1个全连接,单个model在LFW上的识别准确率可达99.22%。



三、以人为中心的安防理念与人像态视识别



基于以人为中心的安防理念,提出人像态视识别新概念。安防的重点是人,特别需要关注和获取重点人群的全面信息。例如以下的相关信息:关注人物出现在公共场所和交通卡口;他的行为和举止是否异常;携带包裹进入公共场所,走出后箱包是否消失;其面部表情和神态如何;近期是否有过敏感接触、过激言语等。



人像态视识别



人像态视识别,是我们构建的深度人像识别的一个新概念,即对于人的像态、形态、神态、意态。


—像态包括人脸和行人表观图像;像态,感知两个维度: 1、对感知对象的物理特征进行精准认知,以表达如颜色、尺寸等;2、对这些特征组合的表象进行属性描述,以表达是什么,如车牌、人脸、行人。像态包含表观:人脸、指纹、掌纹、虹膜、指静脉、人群聚集事件等。


形态包括静止和序惯图像。形态,感知两个维度: 


1、对感知对象的静止肢体特征进行认知,以表达如动作、姿态等;


2、对感知对象的肢体变化特征进行描述,以表达做什么,如步态、奔跑、逆行。形态包含多种人体肢体特征:姿态、行为、动作、步态、轨迹等。视频监控行人识别系统,是在跨视域视频监控网络中,依据行人外观和步态特征,识别查找追踪在不同摄像头下的特定行人。


神态包括主动和被动下的人脸图像。神态,感知主动和被动两个维度: 


1、对感知对象的面部表情特征进行认知,以表达如喜怒哀乐等;


2、对感知对象的面部神色特征进行描述,以表达其内心的波动、思想的意识、精神的状态,通常不为人的意志所控制。神态主要用于表达人的内心状态:神态自若、神色慌张、精神恍惚等。


意态包括显性信息和隐性信息。按照这个范畴定义,构成人像态势识别新概念,智能安防,人是其中核心关键的要素。意态与隐形信息相关联,主要体现在信息的逻辑关系的关联上,具有显性和隐性两个维度:


1、对感知对象行为的企图、目标、后果的显性特征进行认知;


2、对感知对象行为的企图、目标、后果的隐性特征进行认知,以表达其行为与其他事件的关联、影响、及潜在的可能后果。意态的显性特征认知较为容易实现,意态的隐性特征认知难度较大,但实际的事件预测十分需要。例如,同样是购买一把菜刀,如果是一个主妇,可能是用于家庭的厨房餐饮;但若是有前科的人,则需要预警;—又如,一个人长时间在某个地方徘徊,像态是徘徊,但意态可能预示可能的事件。


大数据时代,如何处理从各个数据源收集来的信息,如何对不同地点、不同媒体、不同时间、以及不同清晰度、不同粒度的信息进行综合利用,包括对信息的真伪进行鉴定;都是从未完成过的挑战。显性信息关联,主要体现在目标表观信息的关联上,如目标类型,目标属性,目标状态,目标时空点;隐性信息关联。主要体现在逻辑关系信息的关联上—“蝴蝶效应”,亚洲蝴蝶拍拍翅膀,将使美洲几个月后出现比狂风还厉害的龙卷风!


人像态视识别,全面构建对人的像态、形态、神态、意态的深度识别。通过人像态视识别,实现对目标人的整体信息分析、完善的状态描述。1、2态,侧重“格物”,本意即为考察人这个事物; 3、4态,偏向“致知”,进而达到完善的识别和理解; 人像态视识别的目标就是“格物致知”。综上,通过人像态视识别,实现对目标人的整体信息分析、完善的状态描述。人脸识别系统包含人脸识别、年龄估计、性别识别等,新一代的具有智能的安全监控技术,可实现对人脸的检测、识别和分类;人像态视识别,全面构建对人的像态、形态、神态、意态的深度识别。通过人像态视识别,实现对目标人的整体信息分析、完善的状态描述。


将人像态视识别与智能视频分析有机结合,运用于安防领域,无疑将提高公安安防工作的效率,为平安城市建设和公共安全保障提供精准和有效的信息技术手段,大数据背景下国家社会安全保障重大需求。

640?wx_fmt=png



人工智能赛博物理操作系统

AI-CPS OS

人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。


AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。


领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:

  1. 重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?

  2. 重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?

  3. 重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?

AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:

  1. 精细种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。

  2. 智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。

  3. 高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。

  4. 不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。

  5. 边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。

AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:

  1. 创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;

  2. 对现有劳动力和实物资产进行有利的补充和提升,提高资本效率

  3. 人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间


给决策制定者和商业领袖的建议:

  1. 超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;

  2. 迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新

    评估未来的知识和技能类型;

  3. 制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开

    发过程中确定更加明晰的标准和最佳实践;

  4. 重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临

    较高失业风险的人群;

  5. 开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。


子曰:“君子和而不同,小人同而不和。”  《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。


如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!


新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。





产业智能官  AI-CPS



用“人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链





【智能安防】人像态势识别及其在智能视频监控中的应用_第2张图片

【智能安防】人像态势识别及其在智能视频监控中的应用_第3张图片


长按上方二维码关注微信公众号: AI-CPS,更多信息回复:


新技术“云计算”、“大数据”、“物联网”、“区块链”、“人工智能新产业:智能制造”、“智能农业”、“智能金融”、“智能零售”、“智能城市、“智能驾驶”新模式:“财富空间、“特色小镇”、“赛博物理”、“供应链金融”


点击“阅读原文”,访问AI-CPS OS官网




本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!



版权声明产业智能官(公众号ID:AI-CPS推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:[email protected]





你可能感兴趣的:(【智能安防】人像态势识别及其在智能视频监控中的应用)