argsort函数返回的是数组值从小到大的索引值
One dimensional array:一维数组
>>> x = np.array([3, 1, 2])
>>> np.argsort(x)
array([1, 2, 0])
Two-dimensional array:二维数组
>>> x = np.array([[0, 3], [2, 2]])
>>> x
array([[0, 3],
[2, 2]])
>>> np.argsort(x, axis=0) #按列排序
array([[0, 1],
[1, 0]])
>>> np.argsort(x, axis=1) #按行排序
array([[0, 1],
[0, 1]])
#######################################
例1:
>>> x = np.array([3, 1, 2])
>>> np.argsort(x) #按升序排列
array([1, 2, 0])
>>> np.argsort(-x) #按降序排列
array([0, 2, 1])
>>> x[np.argsort(x)] #通过索引值排序后的数组
array([1, 2, 3])
>>> x[np.argsort(-x)]
array([3, 2, 1])
另一种方式实现按降序排序:
>>> a = x[np.argsort(x)]
>>> a
array([1, 2, 3])
>>> a[::-1]
array([3, 2, 1])
>>> a = [1,2,1,4,3,5] >>> a.sort() >>> a [1, 1, 2, 3, 4, 5]
>>> a = [1,2,1,4,3,5] >>> sorted(a) [1, 1, 2, 3, 4, 5] >>> a [1, 2, 1, 4, 3, 5]
>>> list1 = [('david', 90), ('mary',90), ('sara',80),('lily',95)] >>> sorted(list1,cmp = lambda x,y: cmp(x[0],y[0])) [('david', 90), ('lily', 95), ('mary', 90), ('sara', 80)] >>> sorted(list1,cmp = lambda x,y: cmp(x[1],y[1])) [('sara', 80), ('david', 90), ('mary', 90), ('lily', 95)]
>>> list1 = [('david', 90), ('mary',90), ('sara',80),('lily',95)] >>> sorted(list1,key = lambda list1: list1[0]) [('david', 90), ('lily', 95), ('mary', 90), ('sara', 80)] >>> sorted(list1,key = lambda list1: list1[1]) [('sara', 80), ('david', 90), ('mary', 90), ('lily', 95)]
(3)用reverse排序>>> sorted(list1,reverse = True) [('sara', 80), ('mary', 90), ('lily', 95), ('david', 90)]
(4)用 operator.itemgetter 函数排序>>> from operator import itemgetter >>> sorted(list1, key=itemgetter(1)) [('sara', 80), ('david', 90), ('mary', 90), ('lily', 95)] >>> sorted(list1, key=itemgetter(0)) [('david', 90), ('lily', 95), ('mary', 90), ('sara', 80)]
>>> import operator >>> a = [1,2,3] >>> b = operator.itemgetter(0) >>> b(a) 1
>>> sorted(list1, key=itemgetter(0,1)) [('david', 90), ('lily', 95), ('mary', 90), ('sara', 80)]