- 模式识别 | PRML概览
ZIYUE WU
MachineLearning
PRML全书概览PRML全称PatternRecognitionandMachineLearning,个人认为这是机器学习领域中最好的书籍之一,全书的风格非常Bayesian,作者试图在贝叶斯框架下解释每一种机器学习模型。阅读起来有一定难度,不适合作为机器学习入门教材。然而这本书提供的贝叶斯视角有助于我们更为立体全面理解一些经典模型。全书分为十四个章节,这里我尽可能简要概述每个章节的主要内容,如果
- PRML笔记(十)
以负熵为食
PRML机器学习
10.ApproximateInference在probabilisticmodels中的一个核心任务是,在给定observed(visible)datavariablesX\mathbf{X}X的时候去计算关于latentvariablesZ\mathbf{Z}Z的posteriordistributionp(Z∣X)p(\mathbf{Z|X})p(Z∣X)。并且去在该概率分布下计算一些exp
- 2018年1月29日
真昼之月
积雪还是很多,但是路面不滑不影响交通,所以坐车还是很顺利的。地铁上开始掏出Kindle看《自私的基因》。上午花时间把类别型特征也加了进去,先读了1000行保证程序不会跑崩再上全量数据集,最后全网用户的ROC面积又有了一丝丝提升,所谓蚊子腿也是肉。但是深度学习模型还是不会调参啊……中午在食堂解决,下午则基本是摸鱼为主……PRML也看了一点,不过第三章中后期还是看不懂就跳到第四章了,感觉又犯了心浮气躁
- PRML第一章读书小结
飞剑客阿飞
PRML第一章读书小结 第一章用例子出发,较为简单的引入了概率论、模型、决策、损失、信息论的问题,作为机器学习从业者,读PRML除了巩固已有基础,还受到了很多新的启发,下面将我收到的启发总结如下。1.多项式曲线拟合问题多项式拟合问题作为全书的第一个引例,通过此说明了很多关键的概念。给定一个训练集,训练集由的N次观测组成,记作,对应了相应的观测值,记作。它们拥有了一个内在的规律,这个规律是我们
- Bishop新著 - 深度学习:基础与概念 - 前言
Garry1248
深度学习:基础与概念深度学习人工智能AIGC
译者的话十几年前,笔者在MSRA实习的时候,就接触到了ChristopherM,Bishop的经典巨著《PatternRecogitionandMachineLearning》(一般大家简称为PRML)。Bishop大神是微软剑桥研究院实验室主任,物理出身,对机器学习的基本概念和思想解释的深入浅出,鞭辟入里。以至于这本书被当时从事机器学习和AI方向的研究者奉为圣经。许多同学如饥似渴的阅读全书,连每
- [算法]PRML学习笔记 1.2.2 数学期望和协方差
AutismThyself
算法算法
数学期望在概率学中最重要的事情之一就是寻找出函数的加权平均值。其中函数f(x)的数学期望E[f]是根据其在概率分布p(x)下的平均值计算得出。对于离散分布变量,其公式为:E[f]=∑xp(x)f(x)\displaystyle\sum_{x}p(x)f(x)x∑p(x)f(x)因此,从这个公式可以得出对于离散变量来说数学期望(平均权重)来自于根据各个不同变量x相关的f(x)与这个f(x)相对概率p
- PRML 第三章
萌新待开发
⑉་机器学习及实践(书)་⑉PRML机器学习模式识别线性模型
3回归的线性模型1.之前说的是无监督学习:密度估计+聚类。这里讨论监督学习:回归。2.回归就是维变量对应目标变量的问题。第一章由多项式曲线拟合。最简单就是线性回归。但如果将输入变量进行非线性函数变化后进行线性组合,可以得到基函数。3.过程就是有个观测量和对应目标变量的训练数据集。目标有新的x预测新的t。就构建函数y(x)来预测输出。从概率角度看就是对每个x的目标t值的不确定性进行建模。最小化一个合
- PRML第二章
萌新待开发
⑉་机器学习及实践(书)་⑉机器学习PRML模式识别人工智能
目录2概率分布2.1二元变量2.1.1Beta分布2.2多项式变量2.2.1狄利克雷分布2.3高斯分布2.3.1条件高斯分布2.3.2边缘高斯分布2.3.3高斯变量的贝叶斯定理2.3.4高斯分布的最大似然估计2.3.5顺序估计2.3.6高斯分布的贝叶斯推断2.3.7学生t分布2.3.8周期变量2.3.9高斯混合模型2.4指数分布2.4.1最大似然与充分统计量2.4.2共轭先验2.4.3无信息先验2
- leetcode 圆圈中最后剩下的数字(约瑟夫环)
伊凡vnir
关注公众号长歌大腿,发送“机器学习”关键字,可获取包含机器学习(包含深度学习),统计概率,优化算法等系列文本与视频经典资料,如《ESL》《PRML》《MLAPP》等。题目描述:0,1,,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字。求出这个圆圈里剩下的最后一个数字。例如,0、1、2、3、4这5个数字组成一个圆圈,从数字0开始每次删除第3个数字,则删除的前4个数字依次是
- 正式找工作第二天
一路不向西
这两天生物钟差不多调过来了,已经能正常按时早起,按时午休,身体出现的不适感也没有很多。今天在看书的时候感觉PRML对我来说还是有些太难了,很多公式和推导其实都看不懂,所以感觉不太适合现在的阶段去看,暂时先不想调整,看这周的面试情况吧。做题的话今天感觉比昨天顺畅一点了,但是还是没法得到正确解,慢慢来吧。一、PRML今天看了第一章的第六节,信息熵。讲了一些信息量的概念、平均信息量、乘数等等。对于离散变
- PRML1-引言
仙守
PRML
本系列是根据《patternrecognitionandmachinelearning》一书写的,算是读书笔记?算是吧。因为是从自己角度出发,所以其实很大程度上自己看得懂,估计别人看不懂,还望见谅。数学符号约定:该书意在能够以最小的数学范围来解释整本书,不过在微积分、现代、概率论上还是不可避免的用到,为了方便概念的理解,所以本书在力求数学上的严谨的同时更多的是从不同的参考资料中将数学符号都能够统一
- 《现代推荐算法》矩阵分解系列简介
伊凡vnir
/关注公众号长歌大腿,发送“机器学习”关键字,可获取包含机器学习(包含深度学习),统计概率,优化算法等系列文本与视频经典资料,如《ESL》《PRML》《MLAPP》等。/文章来源《现代推荐算法》矩阵分解系列简介.该章主要介绍矩阵分解系列算法,该系列算法是推荐系统中最重要的算法之一,矩阵分解原理清晰,且复杂度不那么高。对于矩阵分解系列算法在推荐算法中而言,其容易编程实现,实现复杂度低,预测效果也好,
- 《现代推荐算法》神经协同过滤之MLP算法
伊凡vnir
关注公众号长歌大腿,发送“机器学习”关键字,可获取包含机器学习(包含深度学习),统计概率,优化算法等系列文本与视频经典资料,如《ESL》《PRML》《MLAPP》等。《现代推荐算法》神经协同过滤之MLP算法神经协同过滤简介前面的文章介绍了协同过滤算法,主要分为基于用户的协同过滤算法与基于物品的协同过滤算法,同时指出,矩阵分解也属于广义的协同过滤算法。那么之前的文章介绍的SVD,SVD++等等矩阵分
- 图像分割|机器学习|模式识别(2019-04-29~05-04)
Rlinzz
本周计划1.发现pspnet那个多尺度融合对网络有效果,而且,当分割是两类的时候,就效果好,多类就学的很复杂。这周看完pspnet代码。2.完成学习机器学习作业,吴恩达机器学习课程作业。3.继续阅读PRML4.291.看pspnet代码●pythonwith关键字:简单就是打开文件,读完了,自动关文件。open函数withopen('file_name','r')asf:r=f.read()●to
- 机器学习面试之数据降维
梦无音
PCA(主成分分析)和LDA(线性判别分析,FisherLinearDiscriminantAnalysis)都是数据降维的一种方式。但是,PCA是无监督的,而LDA是有监督的。一、PCA在PRML书上有两种定义PCA的方式,其中一种将PCA定义为一种正交投影,使得原始数据在投影子空间的各个维度的方差最大化。对于观测数据x(D维空间),我们的目标是把数据投影到一个更低的M维中。原始数据集的均值向量
- 图像分割|机器学习|模式识别(2019-04-08~04-12)
Rlinzz
本周计划1.完成辅助loss代码2.二值分割效果有所提升,现在训练一下多值分割的效果。有两个思路,只修改class个数还有一个想法是以二值分割为另一个分支网络的gt,但这个需要处理一下分割处理的二值图。3.尽量读完PRML书的高斯部分。每次读英文版的都很慢。但还是要读呀。4.卸载3号服务器上的anaconda然后重新安装●辅助loss代码已完成。BUG1:在Unet末尾cat了前面几层后,在计算l
- 信息论之从熵、惊奇到交叉熵、KL散度和互信息
woisking2
前端
一、熵(PRML)考虑将A地观测的一个随机变量x,编码后传输到B地。这个随机变量有8种可能的状态,每个状态都是等可能的。为了把x的值传给接收者,需要传输⼀个3⽐特的消息。注意,这个变量的熵由下式给出:⾮均匀分布⽐均匀分布的熵要⼩。如果概率分布非均匀,同样使用等长编码,那么并不是最优的。相反,可以根据随机变量服从的概率分布构建Huffman树,得到最优的前缀编码。可以利⽤⾮均匀分布这个特点,使⽤更短
- leetcode 路径总和
伊凡vnir
关注公众号长歌大腿,发送“机器学习”关键字,可获取包含机器学习(包含深度学习),统计概率,优化算法等系列文本与视频经典资料,如《ESL》《PRML》《MLAPP》等。题目描述:给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。说明:叶子节点是指没有子节点的节点。示例:给定如下二叉树,以及目标和sum=22,5/\48//\11134/\\72
- 《现代推荐算法》传统协同过滤(user-CF, item-CF)
伊凡vnir
关注公众号长歌大腿,发送“机器学习”关键字,可获取包含机器学习(包含深度学习),统计概率,优化算法等系列文本与视频经典资料,如《ESL》《PRML》《MLAPP》等。《现代推荐算法》传统协同过滤(user-CF,item-CF)协同过滤简介协同过滤算法发展以来,与矩阵分解密切相关,多有时将矩阵分解系列也归于协同过滤种类,我们这里将其分开来对待,这篇文章讲传统的协同过滤算法,主要包含基于用户的协同过
- PRML第十四章读书笔记——Combining Models 贝叶斯模型平均、委员会bagging、提升方法/AdaBoost、决策树、条件混合模型/混合线性回归/混合逻辑回归/【层次】混合专家模型
Trade Off
机器学习#读书笔记PRML决策树机器学习人工智能集成学习剪枝
(终于读到最后一章了,吼吼!激动呀。我总感觉combiningmodels已经有点频率派方法的味道了。所以接下来要读ESL?)目录14.1BayesianModelAveraging14.2Committees14.3BoostingP659最小化指数误差P661boosting的误差函数14.4Tree-basedModels14.5ConditionalMixtureModelsP667线性回
- PRML一书中关于贝叶斯曲线拟合结论的推导细节
MezereonXP
机器学习算法机器学习人工智能
PRML一书中关于贝叶斯曲线拟合结论的推导细节我们令训练数据集为(X,T)(X,T)(X,T),对于一个新的点xxx,我们希望给出一个预测分布p(t∣x,X,T)p(t|x,X,T)p(t∣x,X,T)p(t∣x,X,T)=∫p(t∣x,w,X,T)dw=∫p(t∣x,w)p(w∣X,T)dwp(t|x,X,T)=\intp(t|x,w,X,T)dw=\intp(t|x,w)p(w|X,T)dw\
- 《现代推荐算法》神经协同过滤之GMF算法
伊凡vnir
关注公众号长歌大腿,发送“机器学习”关键字,可获取包含机器学习(包含深度学习),统计概率,优化算法等系列文本与视频经典资料,如《ESL》《PRML》《MLAPP》等。《现代推荐算法》神经协同过滤之GMF算法神经协同过滤简介前面的文章介绍了协同过滤算法,主要分为基于用户的协同过滤算法与基于物品的协同过滤算法,同时指出,矩阵分解也属于广义的协同过滤算法。那么之前的文章介绍的SVD,SVD++等等矩阵分
- 【应用】【正则化】L1、L2正则化
八号线土著
机器学习正则化
L1正则化的作用:特征选择从可用的特征子集中选择有意义的特征,化简机器学习问题。著名的LASSO(LeastAbsoluteShrinkageandSelectionOperator)模型将L1惩罚项和线性模型结合,使用最小二乘代价函数。L1正则化导致模型参数的稀疏性,被广泛地用于特征选择(featureselection)机制。L2正则化的作用:PRML书中描述“focusonquadratic
- 【西瓜书/机器学习·周志华】机器学习与模式识别思维导图 - PRML Mind Map
Harvey Chui
人工智能
【西瓜书/机器学习·周志华】机器学习与模式识别思维导图提供了与examcoo上作业题相同的知识点范围(由粗体加粗),第一到九章的思维导图第一章-绪论机器学习方法的分类,三大阶段,以及奥卡姆剃刀、NoFreeLunch原理第二章-模型评估与选择什么是误差?机器学习的评估方法,PPP、RRR、F1F_1F1等度量值,ROCROCROC与AUCAUCAUC曲线,代价曲线第三章-线性模型几种典型的线性模型
- EM算法详解
oskor
作为N大机器学习方法的一员,EM算法在各种书籍、博客、网上视频上被描述或者介绍,每次看完总感觉很多地方含糊不清,不能让一个初学者(有一定统计概率基础)接受。最近再B站上,看到徐亦达老师的课程,EM算法这块讲解易于理解和接受,再结合PRML一书的关于混合模型和EM章节内容,对整个EM算法从具体的原理上面有了更深入的理解。在下文中,更多的是通过公式推导和一些文字说明来梳理EM算法,尽量做到大家一看就明
- 正式找工作第三天
一路不向西
今天晚上要去面试蘑菇智行还挺开心的,感觉是家A轮公司,应该要求会低一些的吧,然后还针对性地看了些CNN和目标跟踪的问题,结果人家上来就问nccl库有什么特点,这一看要求我就达不到,果然聊了没几句我们就散了。有点受打击了,明天还有两家,好好加油吧。今天只有上午复习了PRML和LeetCode,下午在看之前面试的面经了。一、PRML今天复习了PRML的两节,第三节其实没看懂啥,讲的是顺序轨迹,其中有一
- 《现代推荐算法》矩阵分解系列(SVD,FunkSVD,BiasSVD)原理
伊凡vnir
/关注公众号长歌大腿,发送“机器学习”关键字,可获取包含机器学习(包含深度学习),统计概率,优化算法等系列文本与视频经典资料,如《ESL》《PRML》《MLAPP》等。/文章来源《现代推荐算法》矩阵分解系列(SVD,FunkSVD,BiasSVD)原理.奇异值分解(SVD)奇异值分解(SVD)原理与主要应用在数据降维中,可以将这个用户物品对应的m×n矩阵M进行SVD分解,并通过选择部分较大的一些奇
- 模式识别与机器学习(一)——绪论、多项式拟合例子
Ice_spring
1.1绪论内容对应PRML书1.1节部分。多项式拟合例子在这个例子中,假设我们有两个变量,它们满足如下关系:其中是一个均值为、标准差为的高斯噪声。我们首先在区间内等间距地产生了10个点,接着根据如上的关系为这个点得到一组对应的目标函数值。这种数据产生方式符合大部分现实世界中的数据集的性质,即产生样本时既包含潜在的规律,又伴随着随机噪声。这些随机噪声的产生原因可能是某种内在的随机性,也可能是某种未被
- 【PRML读书笔记-Chapter1-Introduction】1.3 Model Selection
weixin_30390075
在训练集上有个好的效果不见得在测试集中效果就好,因为可能存在过拟合(over-fitting)的问题。如果训练集的数据质量很好,那我们只需对这些有效数据训练处一堆模型,或者对一个模型给定系列的参数值,然后再根据测试集进行验证,选择效果最好的即可;大多数情况下,数据集大小是有限的或质量不高,那么需要有个第三测试集,用于测试选中的模型的评估。为了构建好的模型,我们常常选用其中质量较高的数据拿来训练,这
- 机器学习书单
jueshu
机器学习机器学习算法人工智能
理论PatternRecognitionandMachineLearning作者:ChristopherM.Bishop(英国剑桥大学微软剑桥研究院院长)https://www.microsoft.com/en-us/research/people/cmbishop/prml-book/PRML《模式识别与机器学习》中英文PDF+程序代码+习题解答+笔记总结:《PatternRecognition
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少