- OpenCV边缘填充方式详解
慕婉0307
opencv基础opencv计算机视觉人工智能
一、边缘填充概述在图像处理中,边缘填充(BorderPadding)是一项基础而重要的技术,特别是在进行卷积操作(如滤波、边缘检测等)时,处理图像边缘像素需要用到周围的像素值。由于图像边缘的像素没有完整的邻域,因此需要通过某种方式对图像边界进行扩展。边缘填充的主要应用场景包括:图像滤波(如高斯滤波、中值滤波等)卷积神经网络(CNN)中的卷积层形态学操作(如膨胀、腐蚀)图像特征提取二、OpenCV中
- Day41 Python打卡训练营
知识回顾1.数据增强2.卷积神经网络定义的写法3.batch归一化:调整一个批次的分布,常用与图像数据4.特征图:只有卷积操作输出的才叫特征图5.调度器:直接修改基础学习率卷积操作常见流程如下:1.输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层2.Flatten->Dense(withDropout,可选)->Dense(Output)importtorchimporttorc
- 深度学习在人脸识别中的应用及Python实现
loop_syntax648
机器学习-深度学习
人脸识别是一种通过计算机技术识别和验证人脸的方法,近年来深度学习在人脸识别领域取得了显著的进展。深度学习模型能够学习和提取人脸图像中的高级特征,从而实现准确的人脸识别。本文将介绍深度学习在人脸识别中的应用,并提供Python实现的源代码。深度学习模型通常基于卷积神经网络(ConvolutionalNeuralNetwork,CNN)进行人脸识别。CNN是一种专门用于处理图像和视觉数据的神经网络模型
- 60天python训练营打卡day41
tan90�=
python60天打卡python开发语言
学习目标:60天python训练营打卡学习内容:DAY41简单CNN知识回顾1.数据增强2.卷积神经网络定义的写法3.batch归一化:调整一个批次的分布,常用与图像数据4.特征图:只有卷积操作输出的才叫特征图5.调度器:直接修改基础学习率卷积操作常见流程如下:输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层2.Flatten->Dense(withDropout,可选)->De
- 【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
heimeiyingwang
算法深度学习算法人工智能
一、为什么需要Winograd卷积算法?从“卷积计算瓶颈”说起在深度学习领域,卷积神经网络(CNN)被广泛应用于图像识别、目标检测、语义分割等任务。然而,卷积操作作为CNN的核心计算单元,其计算量巨大,消耗大量的时间和计算资源。随着模型规模不断增大,传统卷积算法的计算效率成为限制深度学习发展的一大瓶颈。Winograd卷积算法的出现,犹如一把利刃,直击传统卷积计算的痛点。它通过巧妙的数学变换,大幅
- 第五章 卷积神经网络(CNN)
AI拉呱
机器学习深度学习实例讲解与分析
第五章卷积神经网络(CNN)5.1卷积神经网络的组成层在卷积神经网络中,有3种最主要的层:卷积运算层池化层全连接层一个完整的神经网络就是由这三种层叠加组成的。结构示例拿CIFAR-10数据集举例,一个典型的该数据集上的卷积神经网络分类器应该有[INPUT-CONV-RELU-POOL-FC]的结构,INPUT[32*32*3]包含原始图片数据中的全部像素,长宽都是32,有RGB3个颜色通道。CON
- 探秘 Drain3:一款高效日志异常检测神器
尚舰舸Elsie
探秘Drain3:一款高效日志异常检测神器去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于深度学习的日志异常检测系统,由LogPAI团队开发并开源。它旨在帮助运维人员和数据科学家快速发现系统日志中的异常行为,从而及时预测和处理潜在的问题,提升系统的稳定性和安全性。技术分析Drain3的核心技术是利用一维卷积神经网络(1DConvolutionalNeuralNet
- 微算法科技(NASDAQ:MLGO)采用量子卷积神经网络(QCNN),检测区块链中的DDoS攻击
MicroTech2025
量子计算区块链
随着区块链技术的广泛应用,其安全性问题日益凸显。DDoS攻击作为一种常见的网络攻击手段,也对区块链网络构成了严重威胁。传统的检测方法在应对复杂多变的DDoS攻击时存在一定局限性,而量子计算的发展为解决这一问题带来了新的契机。微算法科技(NASDAQ:MLGO)深入研究量子卷积神经网络(QCNN),并对其在检测区块链中的DDoS攻击方面进行了一系列创新改进。量子卷积神经网络(QCNN)是结合了量子计
- 道路点云分割+边界提取+中心线方法总结
asdbhkasgb
相关论文深度学习计算机视觉人工智能算法3d
1.FastLIDAR-basedRoadDetectionUsingFullyConvolutionalNeuralNetworks2017流程点云数据转换为俯视图图像从激光雷达获取的点云数据是无结构的,因此需要先将其转换为适合全卷积神经网络(FCN)处理的格式。具体来说,作者在激光雷达的XY平面上创建一个网格,并将点云中的每个点分配到相应的网格单元。对每个网格单元计算一些基础统计数据,例如:平
- 基于深度学习的智能图像语义分割系统:技术与实践
Blossom.118
机器学习与人工智能深度学习人工智能python分类音视频机器学习sklearn
前言图像语义分割是计算机视觉领域中的一个重要任务,其目标是将图像中的每个像素分配到预定义的语义类别中。这一技术在自动驾驶、医学影像分析、机器人视觉等多个领域有着广泛的应用。近年来,深度学习技术,尤其是卷积神经网络(CNN)及其变体,为图像语义分割带来了显著的改进。本文将详细介绍基于深度学习的智能图像语义分割系统的原理、实现方法以及实际应用案例。一、图像语义分割的基本概念1.1什么是图像语义分割?图
- 基于深度学习的特征映射模块(FMS)实现与分析
RockLiu@805
深度学习模块机器视觉深度学习人工智能
基于深度学习的特征映射模块(FMS)实现与分析引言在现代计算机视觉任务中,特征提取是至关重要的一步。传统的CNN虽然在很多任务上表现良好,但面对复杂图像信息时仍显得力不从心。为了解决这一问题,研究者们不断探索新的方法和技术,以更高效地捕捉和表示图像中的特征。今天,我将带大家深入探索一个结合了深度学习与小波变换的特征映射模块(FMS)。该模块不仅利用了传统的卷积神经网络(CNN),还引入了离散小波变
- 探秘卷积神经网络(CNN):从原理到实战的深度解析
LNL13
cnn人工智能神经网络
在图像识别、视频处理等领域,卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)如同一位“超级侦探”,能够精准捕捉图像中的关键信息,实现对目标的快速识别与分析。从医疗影像诊断到自动驾驶中的路况感知,CNN凭借独特的架构设计和强大的特征提取能力,成为深度学习领域的中流砥柱。接下来,让我们深入探索CNN的奥秘。一、CNN的诞生背景与核心优势传统的神经网络,如多层感知机(ML
- 搜索引擎蜘蛛的智能抓取策略:技术解构与动态博弈的深层逻辑
我爱学习558
搜索引擎蜘蛛2搜索引擎pythonjavascript
搜索引擎蜘蛛的抓取过程远非简单的页面下载,而是一场融合了计算机科学、博弈论和信息经济学的复杂系统工程。其技术实现中暗藏着搜索引擎对网络空间认知范式的根本性转变。###一、多模态解析引擎的量子化演进现代蜘蛛的解析引擎已突破传统HTML解析的局限,形成多模态感知架构:**1.时空感知型解析器**-**视觉权重建模**:通过卷积神经网络(CNN)分析页面视觉热区,将首屏内容权重提升37%-**交互深度预
- Python实现简单的深度学习实践
master_chenchengg
pythonpythonPythonpython开发IT
Python实现简单的深度学习实践Python:通往深度学习世界的钥匙动手搭建你的第一个神经网络模型从零开始,用Python解析MNIST手写数字识别超越基础:使用Keras快速构建卷积神经网络实战演练:训练一个简单的图像分类器Python:通往深度学习世界的钥匙在当今这个数据驱动的时代,Python无疑成为了打开深度学习大门的金钥匙。它不仅语法简洁、易于上手,而且拥有强大的社区支持和丰富的库资源
- 八种常见的神经网络介绍
EdmundXjs
技术专栏神经网络人工智能深度学习
在深度学习的世界里,各种神经网络模型层出不穷,每一种都有其独特的魅力和优势。今天,以下是八种常见的神经网络模型及其特点介绍,让我们来看看它们是如何在人工智能领域大放异彩的。概述(八大神经网络)卷积神经网络(CNN):适用于图像、音频等网格数据处理。通过卷积层提取局部特征,池化层降维,广泛用于图像分类、目标检测。特点是参数共享和权值的局部连接,减少了模型复杂度。循环神经网络(RNN):擅长处理序
- 基于CNN卷积神经网络识别汉字合集-视频介绍下自取
no_work
深度学习cnn人工智能神经网络
内容包括:含ShuffleNet等多个模型的手写中文汉字识别摄像头版109含ShuffleNet等多个模型的手写中文汉字识别摄像头版_哔哩哔哩_bilibili本代码用的python语言,pytorch深度学习框架运行,环境的安装可以参考博客:深度学习环境安装教程-anaconda-python-pytorch_动手学习深度学习的环境安装-CSDN博客代码总共分成三个部分,01py文件是划分数据集
- 卷积神经网络CNN
一、图像概念图像是人类视觉的基础,是自然景物的客观反映,是人类认识世界和人类本身的重要源泉。简单讲:图像是由像素点组成的,每个像素点的取值范围在[0,255]。像素值越接近于0,颜色越暗,接近于黑色;像素值越接近255,颜色越亮,接近于白色。在计算机中,按照颜色和灰度的多少可以将图像分为四种基本类型:①二值图像②灰度图像③索引图像④真彩色RGB图像(深度学习中使用较多)。图像类型通道数像素值范围主
- Incremental Transformer Structure EnhancedImage Inpainting with Masking Positional Encoding笔记
毕设做完了吗?
transformer笔记深度学习
摘要:近年来,图像修复取得了重大进展。然而,恢复具有生动纹理和合理结构的损坏图像仍然具有挑战性。由于卷积神经网络(CNN)的感受野有限,一些特定方法只能处理常规纹理,同时失去整体结构。另一方面,基于注意力的模型可以更好地学习结构恢复的长程依赖性,但它们受到大图像尺寸推理的大量计算的限制。为了解决这些问题,我们建议利用一个额外的结构恢复器来促进图像的增量修复。所提出的模型在固定的低分辨率草图空间中,
- 基于PyQt5与CNN的枸杞/沙棘果图像分类系统
#define TUNE false
人工智能深度学习qtcnn
摘要本文介绍了一套基于PyTorch和PyQt5的枸杞与沙棘果实识别系统。该系统采用卷积神经网络模型,实现了90%以上的识别准确率,响应时间小于500ms,显著提升了传统人工分拣效率。系统具备以下特点:1)可视化交互界面,包含分类显示区、控制面板和参数调节功能;2)支持置信度阈值动态调整(50%-95%);3)提供单图/批量图像处理能力。文章详细解析了系统架构、核心模块代码及功能实现,同时指出了当
- Flask与计算机视觉:图像识别API开发
后端开发笔记
flask计算机视觉pythonai
Flask与计算机视觉:图像识别API开发关键词:Flask框架、计算机视觉、图像识别、API开发、卷积神经网络(CNN)摘要:本文将带你探索如何用轻量级Web框架Flask搭建一个图像识别API。我们会从基础概念讲起,用“快递站”“图片翻译官”等生活化比喻解释技术原理,结合Python代码实战演示从模型加载到接口响应的完整流程,最后讨论实际应用场景和未来趋势。无论你是Web开发新手还是计算机视觉
- 【图像处理入门】11. 深度学习初探:从CNN到GAN的视觉智能之旅
小米玄戒Andrew
图像处理:从入门到专家深度学习图像处理cnn计算机视觉CVGAN
摘要深度学习为图像处理注入了革命性动力。本文将系统讲解卷积神经网络(CNN)的核心原理,通过PyTorch实现图像分类实战;深入解析迁移学习的高效应用策略,利用预训练模型提升自定义任务性能;最后揭开生成对抗网络(GAN)的神秘面纱,展示图像生成与增强的前沿技术。结合代码案例与可视化分析,帮助读者跨越传统算法与深度学习的技术鸿沟。一、卷积神经网络(CNN)基础与实战1.CNN的核心组件与工作原理1.
- 深度学习“炼丹”实战:用LeNet驯服MNIST“神兽”
AI妈妈手把手
深度学习人工智能LeNetcnn模型训练学习笔记MNIST
宝子们,在深度学习的神秘世界里,咱们就像一群“炼丹师”,而模型就是咱们精心炼制的“丹药”,数据集则是炼丹的“原材料”。今天,咱们就用经典的LeNet卷积神经网络模型,在MNIST手写数字数据集这个“原材料宝库”里,炼制出一颗能精准识别数字的“神奇丹药”!LeNet网络结构回顾,见:深度学习图像分类六大经典网络结构全解析一、MNIST数据集:炼丹的“珍贵原料”MNIST数据集可是深度学习界的“老牌明
- 基于深度学习的智能图像分割系统:技术与实践
Blossom.118
机器学习与人工智能深度学习人工智能python机器学习tensorflow神经网络sklearn
前言图像分割是计算机视觉领域中的一个核心任务,其目标是将图像划分为多个有意义的区域或对象。图像分割在医学影像分析、自动驾驶、安防监控等多个领域有着广泛的应用。近年来,深度学习技术,尤其是卷积神经网络(CNN)及其变体,为图像分割带来了显著的改进。本文将详细介绍基于深度学习的智能图像分割系统的原理、实现方法以及实际应用案例。一、图像分割的基本概念1.1什么是图像分割?图像分割是一种将图像划分为多个互
- 基于深度学习的智能图像风格转换系统:技术与实践
Blossom.118
机器学习与人工智能深度学习人工智能机器学习机器人神经网络pythonsklearn
前言图像风格转换是一种将一张图像的内容与另一张图像的风格相结合的技术,广泛应用于艺术创作、图像编辑和视觉特效等领域。近年来,深度学习技术,尤其是卷积神经网络(CNN)和生成对抗网络(GAN),为图像风格转换带来了革命性的进展。本文将详细介绍基于深度学习的智能图像风格转换系统的原理、实现方法以及实际应用案例。一、图像风格转换的基本概念1.1什么是图像风格转换?图像风格转换是一种图像处理技术,其目标是
- 【Python】深度学习-VGG19网络
宅男很神经
python开发语言
第一章:VGG的哲学根基——一场由简约与深度引领的革命在卷积神经网络(ConvolutionalNeuralNetwork,CNN)的璀璨星河中,VGG(VisualGeometryGroup)网络家族的出现,并非一次技术上的偶然突变,而是一场深刻的、影响至今的哲学革命。它并非以奇诡的结构或复杂的数学技巧取胜,恰恰相反,它以一种近乎禁欲主义的简约和对“深度”这一核心要素的极致追求,为后续网络架构的
- VGG-19(Visual Geometry Group)模型
VGG-19是由牛津大学视觉几何组和GoogleDeepMind的研究人员在2014年提出的一个非常经典的深度卷积神经网络模型。一核心结构(1)深度:模型名称中的"19"指的是模型拥有19层带有权重的层(通常指:16个卷积层+3个全连接层=19。如果严格数带参数的层,输入层和ReLU激活层不计入深度统计)。(2)简单范式:VGG系列模型(包括VGG-11,VGG-13,VGG-16,VGG-19)
- pytorch都有哪些神经网络,都哪些情况使用这些神经网络
zhiSiBuYu0517
pythonpytorch神经网络人工智能
PyTorch提供了多种神经网络类型,适用于不同的场景,以下是一些常见的神经网络及其适用情况:前馈神经网络(FeedforwardNeuralNetwork,FNN)结构:由输入层、若干隐藏层和输出层组成,每一层都连接到下一层。适用场景:用于分类和回归问题,适合结构化数据或特征明显的数据集。卷积神经网络(ConvolutionalNeuralNetwork,CNN)结构:包含卷积层和池化层,通过卷
- [论文阅读]PIDNet: A Real-time Semantic Segmentation Network Inspired by PID Controllers
颜笑晏晏
论文阅读
1.摘要双分支网络结构已显示出其对实时语义分割任务的效率性和有效性。然而,低级细节和高级语义的直接融合将导致细节特征容易被周围上下文信息淹没,即本文中的超调(overshoot),这限制了现有两个分支模型的准确性的提高。在本文中,我们在卷积神经网络(CNN)和比例积分微分(PID)控制器之间架起了桥梁,并揭示了双分支网络只是一个比例积分(PI)控制器,当然也会存在类似的超调问题。为了解决这个问题,
- 深度学习 backbone,neck,head网络关键组成
SLAM必须dunk
深度学习人工智能
在深度学习,尤其是计算机视觉任务中,backbone(骨干网络),neck(颈部),head(头部)是网络的关键组成部分,各自承担了不同的功能:1,总署:Backbone,译作骨干网络,主要指用于特征提取的,已在大型数据集(例如ImageNet|COCO等)上完成预训练,拥有预训练参数的卷积神经网络,例如:ResNet-50、Darknet53等;Head,译作检测头,主要用于预测目标的种类和位置
- 计算机视觉卷积神经网络(CNN)基础:从LeNet到ResNet
xcLeigh
计算机视觉CV计算机视觉cnn人工智能AI卷积神经网络
计算机视觉卷积神经网络(CNN)基础:从LeNet到ResNet一、前言二、卷积神经网络基础概念2.1卷积层2.1.1卷积运算原理2.1.2卷积核的作用与参数2.2池化层2.2.1最大池化与平均池化2.2.2池化层的优势与应用2.3全连接层2.3.1全连接层的连接方式2.3.2全连接层在CNN中的角色三、LeNet网络3.1LeNet的网络结构3.1.1整体架构概述3.1.2各层详细介绍3.2Le
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st