- 高斯混合模型(Gaussian Mixture Model, GMM)
不想秃头的程序
神经网络语音识别人工智能深度学习网络
高斯混合模型(GaussianMixtureModel,GMM)是一种概率模型,用于表示数据点由多个高斯分布(GaussianDistribution)混合生成的过程。它广泛应用于聚类分析、密度估计、图像分割、语音识别等领域,尤其适合处理非球形簇或多模态数据。以下是GMM的详细介绍:一、核心思想GMM假设数据是由多个高斯分布混合生成的,每个高斯分布代表一个簇(Cluster),并引入隐变量(Lat
- 10个基于Python的计算机视觉实战项目
云博士的AI课堂
基于Python计算机视觉python计算机视觉机器视觉人工智能
10个基于Python的计算机视觉实战项目,涵盖多个领域和应用场景,每个项目均附有GitHub地址、概述、解决的问题及应用场景:1.PCV图像处理与计算机视觉库GitHub地址:jesolem/PCV概述:提供计算机视觉基础算法的Python实现,包括图像分割、直方图均衡化、图像增强等。解决的问题:简化图像处理流程,支持快速实现算法原型。应用场景:学术研究、教学实验、图像预处理任务。2.基于朴素贝
- 用OpenCV实现图像分割:提取Logo中的特定元素并重新着色
Wave还没秃
opencv人工智能计算机视觉
用OpenCV实现图像分割:提取Logo中的特定元素并重新着色任务:将图片中三个圆形图案以及字母(共四个)单独取出,分别保存为四个新图片,图片大小与原图一致,图案尽量位于图片中心。三个圆形图案在新图片中改成不与于原来的填充色。步骤总览1.读取图片2.预处理:二值化或色彩分割找目标区域3.提取每个圆形图案(红、绿、蓝)和文字区域的掩膜4.将掩膜区域提取出来并改变颜色(对圆形)5.让内容居中对齐,保存
- CVPR 2024 图像处理方向总汇(图像去噪、图像增强、图像分割和图像恢复等)
点云SLAM
图形图像处理深度学习计算机视觉图像分割图像增强CVPR2024人工智能
1、ImageProgress(图像处理)去鬼影GeneratingContentforHDRDeghostingfromFrequencyView去阴影HomoFormer:HomogenizedTransformerforImageShadowRemoval去模糊UnsupervisedBlindImageDeblurringBasedonSelf-EnhancementLatencyCorr
- UNet改进(5):线性注意力机制(Linear Attention)-原理详解与代码实现
摸鱼许可证
人工智能计算机视觉
引言在计算机视觉领域,UNet架构因其在图像分割任务中的卓越表现而广受欢迎。近年来,注意力机制的引入进一步提升了UNet的性能。本文将深入分析一个结合了线性注意力机制的UNet实现,探讨其设计原理、代码实现以及在医学图像分割等任务中的应用潜力。UNet架构概述UNet最初由Ronneberger等人提出,主要用于生物医学图像分割。其独特的U形结构由编码器(下采样路径)和解码器(上采样路径)组成,通
- OpenCV C++ 边缘检测与图像分割
achene_ql
opencvc++计算机视觉人工智能
一、边缘检测在数字图像处理领域,边缘检测是一项至关重要的基础技术。它如同为图像赋予“骨架”,帮助计算机快速识别图像中的物体轮廓、形状与结构,广泛应用于目标识别、图像分割、图像配准等多个领域。1.1概念边缘检测的核心目标是找出图像中像素灰度发生剧烈变化的区域边界。这些边界往往对应着图像中物体的轮廓、不同物体的交界处或纹理变化明显的地方。通过提取这些边缘信息,可以有效减少图像数据量,同时保留图像中最关
- 【GitHub项目实战】Roboflow Sports 实战解析:构建多场景运动视觉系统的开源工具集与工程落地路径
观熵
GitHub开源项目实战github开源人工智能
RoboflowSports实战解析:构建多场景运动视觉系统的开源工具集与工程落地路径关键词RoboflowSports、计算机视觉、体育目标检测、关键点识别、球体追踪、OpenCV、YOLOv8、图像分割、PoseEstimation、数据集标注与训练摘要RoboflowSports是由Roboflow团队推出的面向体育分析场景的开源视觉工具集,涵盖目标检测、图像分割、关键点检测等常用任务,支持
- Matlab | matlab中的图像处理详解
北斗猿
程序语言设计(C语言C++MatlabPython等)matlab算法图像处理
MATLAB图像处理详解这里写目录标题图像处理MATLAB图像处理详解一、图像基础操作1.图像读写与显示2.图像信息获取3.图像类型转换二、图像增强技术1.对比度调整2.去噪处理3.锐化处理三、图像变换1.几何变换2.频域变换四、图像分割1.阈值分割2.边缘检测3.区域分割五、形态学操作1.基本操作2.高级形态学六、特征提取与分析1.区域属性2.纹理特征七、彩色图像处理1.色彩空间转换2.彩色分割
- 医图论文 AAAI‘25 | VOILA: 基于体素与语言交互的复杂度感知CT图像通用分割方法
小白学视觉
医学图像处理论文解读人工智能计算机视觉医学图像处理论文解读深度学习AAAI
论文信息题目:VOILA:Complexity-AwareUniversalSegmentationofCTimagesbyVoxelInteractingwithLanguageVOILA:基于体素与语言交互的复杂度感知CT图像通用分割方法作者:ZishuoWan,YuGao,WanyuanPang,DaweiDing论文创新点引入体素级对比学习:本文首次将体素级对比学习引入医学图像分割任务。通
- OpenCV C++ 图像处理教程:灰度变换与直方图分析
achene_ql
opencvc++图像处理计算机视觉人工智能
在数字图像处理领域,灰度变换与直方图分析是最基础且核心的技术,它们如同“图像的化妆师”,能够通过调整像素灰度分布显著改善图像视觉效果,为后续的目标检测、图像分割等高级任务奠定基础。无论是校正图像的亮度与对比度,还是从低质量图像中提取有效信息,掌握这些技术都是图像处理从业者的必备技能。一、点运算(PointOperation)1.概念点运算是图像处理中最基础的操作之一,指对图像中每个像素点的灰度值进
- 基于深度学习的智能图像分割系统:技术与实践
Blossom.118
机器学习与人工智能深度学习人工智能python机器学习tensorflow神经网络sklearn
前言图像分割是计算机视觉领域中的一个核心任务,其目标是将图像划分为多个有意义的区域或对象。图像分割在医学影像分析、自动驾驶、安防监控等多个领域有着广泛的应用。近年来,深度学习技术,尤其是卷积神经网络(CNN)及其变体,为图像分割带来了显著的改进。本文将详细介绍基于深度学习的智能图像分割系统的原理、实现方法以及实际应用案例。一、图像分割的基本概念1.1什么是图像分割?图像分割是一种将图像划分为多个互
- 图像的形态学操作
Suniaun原型机
OpenCV入门opencv计算机视觉c++
OpenCV中的形态学操作图像的形态学操作(MorphologicalOperations)是一种基于图像形状的处理方法,通常用于二值图像的分析和处理。形态学操作通过对图像中各个区域的结构进行改变或分析,来提取或增强图像中的形态特征(如边缘、物体、空洞等)。这些操作在许多计算机视觉任务中非常常见,例如噪声去除、边缘检测、图像分割、物体识别等。它们主要基于图像的几何形状进行分析,通过设置形态学核(通
- 医图论文 Arxiv‘24 | SEG-SAM:用于统一医学图像分割的语义引导SAM
小白学视觉
医学图像处理论文解读医学图像处理医学图像顶会Arxiv论文解读深度学习
论文信息题目:SEG-SAM:Semantic-GuidedSAMforUnifiedMedicalImageSegmentationSEG-SAM:用于统一医学图像分割的语义引导SAM作者:ShuangpingHuang,HaoLiang,QingfengWang,ChulongZhong,ZijianZhou,MiaojingShi论文创新点语义感知解码器:作者提出了一个独立的语义感知解码器(
- RV1106 图像分割 基于paddleseg
Linzhenghan
凌智视觉模块(RV1106)目标检测计算机视觉opencv人工智能
RV1106图像分割基于paddleseg图像分割1.基本知识简介1.1人像分割简介1.2人像分割常用方法2.C++API文档2.1RKNPU2Backend类2.1.1头文件2.1.2构造类函数2.1.3Initialize函数2.1.4Run函数2.1.5GetInputAttrs函数2.1.6GetOutputAttrs函数3.PP-Humanseg人像分割代码解析3.1流程图3.2核心代码
- 目标检测与图像分割:协同分析图像信息
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1计算机视觉领域的重要任务目标检测和图像分割是计算机视觉领域中两个至关重要的任务,它们在许多应用场景中扮演着关键角色,例如自动驾驶、医疗影像分析、机器人视觉等。目标检测旨在识别图像中特定目标的位置和类别,而图像分割则将图像分割成不同的区域,每个区域代表一个特定的对象或部分。1.2从粗粒度到细粒度的图像理解目标检测提供了一种粗粒度的图像理解方式,它能够告诉我们图像中存在哪些目标以及它
- 树莓派 5 AI 套件(Hailo-8L)使用教程
kuan_li_lyg
树莓派&Jetson教程人工智能树莓派机器人开发语言嵌入式硬件python神经网络
系列文章目录目录系列文章目录前言一、人工智能模块功能二、安装三、入门3.1前提条件3.2硬件设置3.3演示3.3.1目标检测3.3.2图像分割3.3.3姿势估计四、更多资源五、产品简介前言TheRaspberryPiAIKitRaspberryPiAI套件将RaspberryPiM.2HAT+与HailoAI加速模块捆绑在一起,供RaspberryPi5使用。套件包含以下内容:包含神经处理单元(N
- 将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
黄卷青灯77
计算机视觉opencv人工智能自动化阈值OTSU
Otsu是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。Otsu方法的原理Otsu方法的核心思想是将图像的像素分为两类(前景和背景),并通过统计分析找到一个阈值,使得这两类之间的差异最大化。具体步骤如下:计算图像的直方图:统计每个灰度值的像素
- nnUNet V2修改网络——暴力替换网络为Swin-Unet
w1ndfly
nnU-NetV2修改网络nnunet深度学习人工智能机器学习nnunetv2
更换前,要用nnUNetV2跑通所用数据集,证明nnUNetV2、数据集、运行环境等没有问题阅读nnU-NetV2的U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。Swin-Unet是一种基于纯Transformer的U型编码器-解码器架构,专为医学图像分割任务设计。传统方法主要依赖卷积神经网络(CNN),尤其是U-Net及其变体,通过局部卷积操作和跳跃连接提取多尺度特征。然
- 使用 MMDetection 实现 Pascal VOC 数据集的目标检测项目练习(一) 开端
深蓝海拓
PascalVOC图像集的练习项目目标检测人工智能计算机视觉pytorch深度学习
一、背景知识PascalVOCPascalVOC(PatternAnalysis,StaticalModelingandComputationalLearning和VisualObjectClasses)是一个知名的计算机视觉数据集,专注于目标检测、图像分割等任务。它包含20个不同物体类别的图像注释,如人、动物、交通工具等。PascalVOC挑战赛自2005年至2012年每年举办,其中VOC200
- 跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
Title题目Cross-viewdiscrepancy-dependencynetworkforvolumetricmedicalimagesegmentation跨视角差异-依赖网络用于体积医学图像分割01文献速递介绍医学图像分割旨在从原始图像中分离出受试者的解剖结构(例如器官和肿瘤),并为每个像素分配语义类别,这在许多临床应用中起着至关重要的作用,如器官建模、疾病诊断和治疗规划(Shamsh
- 七天速成数字图像处理之五(图像分割)
ZzzZ31415926
图像处理计算机视觉算法人工智能数学建模
图像分割(ImageSegmentation)是数字图像处理中最核心、最具挑战性的任务之一,其目标是将图像划分为具有一致特征的区域,从而实现对图像中目标或结构的提取、理解与分析。下面我将从概念、分类、经典方法、实际应用四个层面为你系统性地讲解图像分割。一、什么是图像分割?定义:图像分割是指将图像划分为若干个互不重叠的区域,使得每个区域内部具有某种一致性(如灰度、纹理、颜色、边缘等),而不同区域之间
- 【MATLAB源码】机器视觉与图像识别技术(4)---模式识别与视觉计数
§ꦿCFོ༉
机器视觉与图像识别技术计算机视觉算法人工智能图像处理matlab深度学习
系列文章目录第一篇文章:【MATLAB源码】机器视觉与图像识别技术—视觉系统的构成(视频与图像格式转换代码及软件下载)第二篇文章:【MATLAB源码】机器视觉与图像识别技术(2)—图像分割基础第三篇文章:【MATLAB源码】机器视觉与图像识别技术(2)续—图像分割算法第四篇文章:【MATLAB源码】机器视觉与图像识别技术(3)—数字形态学处理以及图像特征点提取模式识别与视觉计数
- Python----目标检测(YOLO简介)
蹦蹦跳跳真可爱589
目标检测Python目标检测YOLO目标跟踪人工智能计算机视觉python
一、YOLO简介[YOLO](YouOnlyLookOnce)是一种流行的物体检测和图像分割模型,由华盛顿大学的约瑟夫-雷德蒙(JosephRedmon)和阿里-法哈迪(AliFarhadi)开发,YOLO于2015年推出,因其高速度和高精确度而迅速受到欢迎。在计算机视觉(ComputerVision)领域,目标检测(ObjectDetection)一直是最为基础且至关重要的研究方向之一。随着深度
- 聚类算法性能对比:K-means vs DBSCAN vs 层次聚类
AI智能探索者
算法聚类kmeansai
聚类算法性能对比:K-meansvsDBSCANvs层次聚类关键词:聚类算法、K-means、DBSCAN、层次聚类、性能对比、机器学习、无监督学习摘要:聚类是无监督学习的核心任务之一,广泛应用于用户分群、图像分割、异常检测等场景。本文将用“分水果”“找朋友”“建家谱”等生活化比喻,从原理、优缺点到实战场景,一步一步对比K-means、DBSCAN、层次聚类三种主流算法。无论你是刚入门的机器学习爱
- 聚类算法参数调优指南:如何获得最佳分组效果
AIGC应用创新大全
算法聚类数据挖掘ai
聚类算法参数调优指南:如何获得最佳分组效果关键词:聚类算法、参数调优、K-means、DBSCAN、轮廓系数、Calinski-Harabasz、高维数据摘要:聚类算法是无监督学习的核心工具,广泛用于用户分群、图像分割、异常检测等场景。但很多人发现:即使选对了算法,参数设置不当也会导致“分组混乱”或“簇无意义”。本文将用“分糖果”“找人群”等生活案例,结合Python代码实战,从底层逻辑到调优技巧
- C++ 实现 K-Means 聚类算法在图像分割中的应用
数字魔方操控师
c++聚类算法开发语言K-Means
K-Means聚类算法在图像分割中的C++实现1.K-Means聚类算法原理K-Means是一种经典的无监督学习算法,用于将数据点划分为K个不同的簇。其核心思想是通过迭代优化,使得每个数据点到其所属簇中心的距离平方和最小。算法步骤如下:初始化:随机选择K个数据点作为初始簇中心分配:将每个数据点分配到距离最近的簇中心更新:重新计算每个簇的中心迭代:重复步骤2和3,直到簇中心不再变化或达到最大迭代次数
- 【深度学习新浪潮】多模态模型如何处理任意分辨率输入?
小米玄戒Andrew
深度学习新浪潮深度学习人工智能图像处理计算机视觉python语言模型大模型
多模态模型处理任意分辨率输入的能力主要依赖于架构设计的灵活性和预处理技术的结合。以下是核心方法及技术细节:一、图像模态的分辨率处理1.基于Transformer的可变补丁划分(ViT架构)补丁化(PatchEmbedding):将图像分割为固定大小的补丁(如16×16或32×32像素),不同分辨率的图像会生成不同数量的补丁。例如:224×224图像→14×14补丁(共196个)384×384图像→
- c++实现分水岭算法
手中的世界
图像处理算法c++opencv
水岭算法是一种基于图论的图像分割算法,它将图像看做一个拓扑图,利用水位不断上升的过程将图像中的区域分割出来。以下是使用C++实现分水岭算法的步骤及讲解:导入必要的头文件:#include#includeusingnamespacecv;usingnamespacestd;这里导入了OpenCV和C++的标准输入输出流。读入图像并转为灰度图:Matsrc=imread("input.jpg");Ma
- OpenCV中的分水岭算法 (C/C++)
whoarethenext
c++opencv分水岭
OpenCV中的分水岭算法(C/C++)️分水岭算法(WatershedAlgorithm)是一种在图像处理和计算机视觉中广泛应用的图像分割方法。它特别适用于分离图像中相互接触或重叠的对象。其基本思想是将灰度图像看作一个地形景观,其中灰度值代表海拔高度。算法模拟从用户定义的标记点(“种子点”)开始向“盆地”注水的过程,当不同盆地的水汇合时,便形成了“分水岭线”,这些线就是对象的边界。1.算法原理简
- 学习海康VisionMaster之像素统计
yuhouxiyang
VisionMaster学习计算机视觉
一:进一步学习了今天学习下VisionMaster中的像素统计工具:就是统计在ROI范围内满足阈值范围的像素数量和比率二:开始学习1:什么是像素统计?像素统计模块用于统计灰度图像中指定ROI区域内满足灰度阈值范围的像素数量,并给出该部分像素数量占ROI内所有像素数量的比率。图像阈值是指图像中像素灰度值的临界值,图像阈值是图像分割的基础,基于此可完成图像的二值化相当于为图像二值化提供数据参考2:应用
- ztree设置禁用节点
3213213333332132
JavaScriptztreejsonsetDisabledNodeAjax
ztree设置禁用节点的时候注意,当使用ajax后台请求数据,必须要设置为同步获取数据,否者会获取不到节点对象,导致设置禁用没有效果。
$(function(){
showTree();
setDisabledNode();
});
- JVM patch by Taobao
bookjovi
javaHotSpot
在网上无意中看到淘宝提交的hotspot patch,共四个,有意思,记录一下。
7050685:jsdbproc64.sh has a typo in the package name
7058036:FieldsAllocationStyle=2 does not work in 32-bit VM
7060619:C1 should respect inline and
- 将session存储到数据库中
dcj3sjt126com
sqlPHPsession
CREATE TABLE sessions (
id CHAR(32) NOT NULL,
data TEXT,
last_accessed TIMESTAMP NOT NULL,
PRIMARY KEY (id)
);
<?php
/**
* Created by PhpStorm.
* User: michaeldu
* Date
- Vector
171815164
vector
public Vector<CartProduct> delCart(Vector<CartProduct> cart, String id) {
for (int i = 0; i < cart.size(); i++) {
if (cart.get(i).getId().equals(id)) {
cart.remove(i);
- 各连接池配置参数比较
g21121
连接池
排版真心费劲,大家凑合看下吧,见谅~
Druid
DBCP
C3P0
Proxool
数据库用户名称 Username Username User
数据库密码 Password Password Password
驱动名
- [简单]mybatis insert语句添加动态字段
53873039oycg
mybatis
mysql数据库,id自增,配置如下:
<insert id="saveTestTb" useGeneratedKeys="true" keyProperty="id"
parameterType=&
- struts2拦截器配置
云端月影
struts2拦截器
struts2拦截器interceptor的三种配置方法
方法1. 普通配置法
<struts>
<package name="struts2" extends="struts-default">
&
- IE中页面不居中,火狐谷歌等正常
aijuans
IE中页面不居中
问题是首页在火狐、谷歌、所有IE中正常显示,列表页的页面在火狐谷歌中正常,在IE6、7、8中都不中,觉得可能那个地方设置的让IE系列都不认识,仔细查看后发现,列表页中没写HTML模板部分没有添加DTD定义,就是<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3
- String,int,Integer,char 几个类型常见转换
antonyup_2006
htmlsql.net
如何将字串 String 转换成整数 int?
int i = Integer.valueOf(my_str).intValue();
int i=Integer.parseInt(str);
如何将字串 String 转换成Integer ?
Integer integer=Integer.valueOf(str);
如何将整数 int 转换成字串 String ?
1.
- PL/SQL的游标类型
百合不是茶
显示游标(静态游标)隐式游标游标的更新和删除%rowtyperef游标(动态游标)
游标是oracle中的一个结果集,用于存放查询的结果;
PL/SQL中游标的声明;
1,声明游标
2,打开游标(默认是关闭的);
3,提取数据
4,关闭游标
注意的要点:游标必须声明在declare中,使用open打开游标,fetch取游标中的数据,close关闭游标
隐式游标:主要是对DML数据的操作隐
- JUnit4中@AfterClass @BeforeClass @after @before的区别对比
bijian1013
JUnit4单元测试
一.基础知识
JUnit4使用Java5中的注解(annotation),以下是JUnit4常用的几个annotation: @Before:初始化方法 对于每一个测试方法都要执行一次(注意与BeforeClass区别,后者是对于所有方法执行一次)@After:释放资源 对于每一个测试方法都要执行一次(注意与AfterClass区别,后者是对于所有方法执行一次
- 精通Oracle10编程SQL(12)开发包
bijian1013
oracle数据库plsql
/*
*开发包
*包用于逻辑组合相关的PL/SQL类型(例如TABLE类型和RECORD类型)、PL/SQL项(例如游标和游标变量)和PL/SQL子程序(例如过程和函数)
*/
--包用于逻辑组合相关的PL/SQL类型、项和子程序,它由包规范和包体两部分组成
--建立包规范:包规范实际是包与应用程序之间的接口,它用于定义包的公用组件,包括常量、变量、游标、过程和函数等
--在包规
- 【EhCache二】ehcache.xml配置详解
bit1129
ehcache.xml
在ehcache官网上找了多次,终于找到ehcache.xml配置元素和属性的含义说明文档了,这个文档包含在ehcache.xml的注释中!
ehcache.xml : http://ehcache.org/ehcache.xml
ehcache.xsd : http://ehcache.org/ehcache.xsd
ehcache配置文件的根元素是ehcahe
ehcac
- java.lang.ClassNotFoundException: org.springframework.web.context.ContextLoaderL
白糖_
javaeclipsespringtomcatWeb
今天学习spring+cxf的时候遇到一个问题:在web.xml中配置了spring的上下文监听器:
<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>
随后启动
- angular.element
boyitech
AngularJSAngularJS APIangular.element
angular.element
描述: 包裹着一部分DOM element或者是HTML字符串,把它作为一个jQuery元素来处理。(类似于jQuery的选择器啦) 如果jQuery被引入了,则angular.element就可以看作是jQuery选择器,选择的对象可以使用jQuery的函数;如果jQuery不可用,angular.e
- java-给定两个已排序序列,找出共同的元素。
bylijinnan
java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class CommonItemInTwoSortedArray {
/**
* 题目:给定两个已排序序列,找出共同的元素。
* 1.定义两个指针分别指向序列的开始。
* 如果指向的两个元素
- sftp 异常,有遇到的吗?求解
Chen.H
javajcraftauthjschjschexception
com.jcraft.jsch.JSchException: Auth cancel
at com.jcraft.jsch.Session.connect(Session.java:460)
at com.jcraft.jsch.Session.connect(Session.java:154)
at cn.vivame.util.ftp.SftpServerAccess.connec
- [生物智能与人工智能]神经元中的电化学结构代表什么?
comsci
人工智能
我这里做一个大胆的猜想,生物神经网络中的神经元中包含着一些化学和类似电路的结构,这些结构通常用来扮演类似我们在拓扑分析系统中的节点嵌入方程一样,使得我们的神经网络产生智能判断的能力,而这些嵌入到节点中的方程同时也扮演着"经验"的角色....
我们可以尝试一下...在某些神经
- 通过LAC和CID获取经纬度信息
dai_lm
laccid
方法1:
用浏览器打开http://www.minigps.net/cellsearch.html,然后输入lac和cid信息(mcc和mnc可以填0),如果数据正确就可以获得相应的经纬度
方法2:
发送HTTP请求到http://www.open-electronics.org/celltrack/cell.php?hex=0&lac=<lac>&cid=&
- JAVA的困难分析
datamachine
java
前段时间转了一篇SQL的文章(http://datamachine.iteye.com/blog/1971896),文章不复杂,但思想深刻,就顺便思考了一下java的不足,当砖头丢出来,希望引点和田玉。
-----------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第二课
dcj3sjt126com
englishword
money 钱
paper 纸
speak 讲,说
tell 告诉
remember 记得,想起
knock 敲,击,打
question 问题
number 数字,号码
learn 学会,学习
street 街道
carry 搬运,携带
send 发送,邮寄,发射
must 必须
light 灯,光线,轻的
front
- linux下面没有tree命令
dcj3sjt126com
linux
centos p安装
yum -y install tree
mac os安装
brew install tree
首先来看tree的用法
tree 中文解释:tree
功能说明:以树状图列出目录的内容。
语 法:tree [-aACdDfFgilnNpqstux][-I <范本样式>][-P <范本样式
- Map迭代方式,Map迭代,Map循环
蕃薯耀
Map循环Map迭代Map迭代方式
Map迭代方式,Map迭代,Map循环
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年
- Spring Cache注解+Redis
hanqunfeng
spring
Spring3.1 Cache注解
依赖jar包:
<!-- redis -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redis</artifactId>
- Guava中针对集合的 filter和过滤功能
jackyrong
filter
在guava库中,自带了过滤器(filter)的功能,可以用来对collection 进行过滤,先看例子:
@Test
public void whenFilterWithIterables_thenFiltered() {
List<String> names = Lists.newArrayList("John"
- 学习编程那点事
lampcy
编程androidPHPhtml5
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- 架构师之流处理---------bytebuffer的mark,limit和flip
nannan408
ByteBuffer
1.前言。
如题,limit其实就是可以读取的字节长度的意思,flip是清空的意思,mark是标记的意思 。
2.例子.
例子代码:
String str = "helloWorld";
ByteBuffer buff = ByteBuffer.wrap(str.getBytes());
Sy
- org.apache.el.parser.ParseException: Encountered " ":" ": "" at line 1, column 1
Everyday都不同
$转义el表达式
最近在做Highcharts的过程中,在写js时,出现了以下异常:
严重: Servlet.service() for servlet jsp threw exception
org.apache.el.parser.ParseException: Encountered " ":" ": "" at line 1,
- 用Java实现发送邮件到163
tntxia
java实现
/*
在java版经常看到有人问如何用javamail发送邮件?如何接收邮件?如何访问多个文件夹等。问题零散,而历史的回复早已经淹没在问题的海洋之中。
本人之前所做过一个java项目,其中包含有WebMail功能,当初为用java实现而对javamail摸索了一段时间,总算有点收获。看到论坛中的经常有此方面的问题,因此把我的一些经验帖出来,希望对大家有些帮助。
此篇仅介绍用
- 探索实体类存在的真正意义
java小叶檀
POJO
一. 实体类简述
实体类其实就是俗称的POJO,这种类一般不实现特殊框架下的接口,在程序中仅作为数据容器用来持久化存储数据用的
POJO(Plain Old Java Objects)简单的Java对象
它的一般格式就是
public class A{
private String id;
public Str