win10+vs2015下caffe安装详解

 

本人安装环境:

 

1, windows10操作系统

2, vs2015,可以下载官方Community版本,这个可以一直免费使用

3, python2.7,可以参考该链接http://blog.csdn.net/qq_14845119/article/details/52354394

4, 官方BVLC版本的caffe ,https://github.com/BVLC/caffe/tree/windows

5, Cuda8.0,官网链接,https://developer.nvidia.com/cuda-toolkit

6, Cudnn-v5.1,官网链接,https://developer.nvidia.com/cudnn

 

 

安装过程:

1, cuda+cudnn安装

cuda一路next进行安装。Cudnn下载完成后,进行解压,将相应的bin,include,lib分别放于自己的cuda下面的相应目录中,例如,本人电脑的cuda目录为C:\Program Files\NVIDIAGPU Computing Toolkit\CUDA\v8.0,因此,将刚才解压的文件放在这个目录下面的bin,include,lib文件夹下。

2, caffe安装

这里假设本人下载后解压的caffe目录cafferoot为D:\caffe-vs2015,先修改该目录下,D:\caffe-vs2015\ scripts\build_win.cmd,

修改第8行为,if NOT DEFINED WITH_NINJA set WITH_NINJA=0,表示使用cl编译器,而非NINJA

修改第9行为,if NOT DEFINED CPU_ONLY set CPU_ONLY=0,表示编译GPU版本caffe

修改第74行为,if NOT DEFINED WITH_NINJA set WITH_NINJA=0,表示使用cl编译器,而非NINJA

修改完毕后,返回上级目录,cmd下执行下面的命令。

scripts\build_win.cmd

win10+vs2015下caffe安装详解_第1张图片

win10+vs2015下caffe安装详解_第2张图片

然后cmake就会自动下载需要的依赖项,默认下载到C:\Users\当前用户名\.caffe\dependencies,下载完毕后cmake就会进行编译,生成vs2015需要的.Sln工程。

win10+vs2015下caffe安装详解_第3张图片

完毕后在D:\caffe-vs2015\build下面就可以找到Caffe.sln,使用VS2015打开,对整个工程进行编译即可。完毕后就会生成需要的库文件。

至此,如果你一路走下来了,那么恭喜你,你已经成功编译出来了。为了证明我们刚才编译完的caffe是可以使用的,我们进行下面的简单测试。

 

 

首先,需要对安装的依赖包做一些简单的修正,

1, 将C:\Users\用户名\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\include下面的boost-1_61文件夹下面的,boost文件夹剪切到和该boost-1_61同一目录。这样方便vs可以找到。

win10+vs2015下caffe安装详解_第4张图片

2, 将libboost_date_time-vc140-mt-1_61.lib,libboost_filesystem-vc140-mt-1_61.lib拷贝到C:\Users\用户名\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib下面,这个可能是下载过程中没有下载全吧。这2个lib可以这里下载,http://download.csdn.net/download/qq_14845119/9962236

 

 

下面可以开始我们的测试程序了,躁动起来吧。

win10+vs2015下caffe安装详解_第5张图片

这个例子主要基于,D:\caffe-vs2015\examples\cpp_classification.cpp,进行简单的修改。

程序主要如下,

 

Head.h

 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include  

namespace caffe
{
	
	extern INSTANTIATE_CLASS(InputLayer);
	extern INSTANTIATE_CLASS(InnerProductLayer);
	extern INSTANTIATE_CLASS(DropoutLayer);
	extern INSTANTIATE_CLASS(ConvolutionLayer);
	extern INSTANTIATE_CLASS(ReLULayer);
	extern INSTANTIATE_CLASS(PoolingLayer);
	extern INSTANTIATE_CLASS(LRNLayer);
	extern INSTANTIATE_CLASS(SoftmaxLayer);
}

 

Classification.cpp

#define USE_OPENCV 1
//#define CPU_ONLY 1

#include 
#ifdef USE_OPENCV
#include 
#include 
#include 
#endif  // USE_OPENCV
#include 
#include 
#include 
#include 
#include 
#include 
#include "head.h"

#ifdef USE_OPENCV
using namespace cv;
using namespace caffe;  // NOLINT(build/namespaces)
using std::string;

typedef std::pair Prediction;

class Classifier {
 public:
  Classifier(const string& model_file, const string& trained_file, const string& mean_file,            const string& label_file);
  std::vector Classify(const cv::Mat& img, int N = 5);

 private:
  void SetMean(const string& mean_file);
  std::vector Predict(const cv::Mat& img);
  void WrapInputLayer(std::vector* input_channels);
  void Preprocess(const cv::Mat& img,std::vector* input_channels);

 private:
  shared_ptr > net_;
  cv::Size input_geometry_;
  int num_channels_;
  cv::Mat mean_;
  std::vector labels_;
};

Classifier::Classifier(const string& model_file,
                       const string& trained_file,
                       const string& mean_file,
                       const string& label_file) {
#ifdef CPU_ONLY
  Caffe::set_mode(Caffe::CPU);
#else
  Caffe::set_mode(Caffe::GPU);
#endif

  net_.reset(new Net(model_file, TEST));
  net_->CopyTrainedLayersFrom(trained_file);

  CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
  CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";

  Blob* input_layer = net_->input_blobs()[0];
  num_channels_ = input_layer->channels();
  CHECK(num_channels_ == 3 || num_channels_ == 1) << "Input layer should have 1 or 3 channels.";
  input_geometry_ = cv::Size(input_layer->width(), input_layer->height());

  SetMean(mean_file);

  std::ifstream labels(label_file.c_str());
  CHECK(labels) << "Unable to open labels file " << label_file;
  string line;
  while (std::getline(labels, line))
    labels_.push_back(string(line));

  Blob* output_layer = net_->output_blobs()[0];
  CHECK_EQ(labels_.size(), output_layer->channels()) << "Number of labels is different from the output layer dimension.";
}

static bool PairCompare(const std::pair& lhs, const std::pair& rhs) {
  return lhs.first > rhs.first;
}

static std::vector Argmax(const std::vector& v, int N) {
  std::vector > pairs;
  for (size_t i = 0; i < v.size(); ++i)
    pairs.push_back(std::make_pair(v[i], static_cast(i)));
  std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);

  std::vector result;
  for (int i = 0; i < N; ++i)
    result.push_back(pairs[i].second);
  return result;
}

std::vector Classifier::Classify(const cv::Mat& img, int N) {
  std::vector output = Predict(img);

  N = std::min(labels_.size(), N);
  std::vector maxN = Argmax(output, N);
  std::vector predictions;
  for (int i = 0; i < N; ++i) {
    int idx = maxN[i];
    predictions.push_back(std::make_pair(labels_[idx], output[idx]));
  }

  return predictions;
}

void Classifier::SetMean(const string& mean_file) {
  BlobProto blob_proto;
  ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);

  Blob mean_blob;
  mean_blob.FromProto(blob_proto);
  CHECK_EQ(mean_blob.channels(), num_channels_) << "Number of channels of mean file doesn't match input layer.";

  std::vector channels;
  float* data = mean_blob.mutable_cpu_data();
  for (int i = 0; i < num_channels_; ++i) {
    cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
    channels.push_back(channel);
    data += mean_blob.height() * mean_blob.width();
  }
  cv::Mat mean;
  cv::merge(channels, mean);
  cv::Scalar channel_mean = cv::mean(mean);
  mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}

std::vector Classifier::Predict(const cv::Mat& img) {
  Blob* input_layer = net_->input_blobs()[0];
  input_layer->Reshape(1, num_channels_,input_geometry_.height, input_geometry_.width);
  net_->Reshape();
  std::vector input_channels;
  WrapInputLayer(&input_channels);
  Preprocess(img, &input_channels);
  net_->Forward();

  Blob* output_layer = net_->output_blobs()[0];
  const float* begin = output_layer->cpu_data();
  const float* end = begin + output_layer->channels();
  return std::vector(begin, end);
}

void Classifier::WrapInputLayer(std::vector* input_channels) {
  Blob* input_layer = net_->input_blobs()[0];

  int width = input_layer->width();
  int height = input_layer->height();
  float* input_data = input_layer->mutable_cpu_data();
  for (int i = 0; i < input_layer->channels(); ++i) {
    cv::Mat channel(height, width, CV_32FC1, input_data);
    input_channels->push_back(channel);
    input_data += width * height;
  }
}

void Classifier::Preprocess(const cv::Mat& img, std::vector* input_channels) {
  cv::Mat sample;
  if (img.channels() == 3 && num_channels_ == 1)
    cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
  else if (img.channels() == 4 && num_channels_ == 1)
    cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
  else if (img.channels() == 4 && num_channels_ == 3)
    cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
  else if (img.channels() == 1 && num_channels_ == 3)
    cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
  else
    sample = img;

  cv::Mat sample_resized;
  if (sample.size() != input_geometry_)
    cv::resize(sample, sample_resized, input_geometry_);
  else
    sample_resized = sample;

  cv::Mat sample_float;
  if (num_channels_ == 3)
    sample_resized.convertTo(sample_float, CV_32FC3);
  else
    sample_resized.convertTo(sample_float, CV_32FC1);

  cv::Mat sample_normalized;
  cv::subtract(sample_float, mean_, sample_normalized);
  cv::split(sample_normalized, *input_channels);

  CHECK(reinterpret_cast(input_channels->at(0).data) == net_->input_blobs()[0]->cpu_data())
    << "Input channels are not wrapping the input layer of the network.";
}

int main(int argc, char** argv) {
  ::google::InitGoogleLogging(argv[0]);

  string model_file = "deploy.prototxt";
  string trained_file = "bvlc_reference_caffenet.caffemodel";
  string mean_file = "imagenet_mean.binaryproto";
  string label_file = "synset_words.txt";
  Classifier classifier(model_file, trained_file, mean_file, label_file);

  string file = "cat.jpg";
  std::cout << "---------- Prediction for " << file << " ----------" << std::endl;
  cv::Mat img = cv::imread(file,1);

  CHECK(!img.empty()) << "Unable to decode image " << file;
  std::vector predictions = classifier.Classify(img);

  for (size_t i = 0; i < predictions.size(); ++i) {
    Prediction p = predictions[i];
    std::cout << std::fixed << std::setprecision(4) << p.second << " - \"" << p.first << "\"" << std::endl;
  }
}
#else
int main(int argc, char** argv) {
  LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif  // USE_OPENCV

 

建一个vs的端口程序,然后将该cpp添加进去。

环境配置如下,模式为x64,release模式。

包含目录:

D:\caffe-vs2015\include

D:\caffe-vs2015\build\include

C:\Users\用户名\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\include

C:\Program Files\NVIDIA GPU ComputingToolkit\CUDA\v8.0\include

库目录:

C:\Users\用户名\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib

D:\caffe-vs2015\build\lib\Release

C:\Users\用户名\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\x64\vc14\lib

E:\Anaconda2\libs

C:\Program Files\NVIDIA GPU ComputingToolkit\CUDA\v8.0\lib\x64

链接器-输入:

opencv_core310.lib

opencv_highgui310.lib

opencv_imgproc310.lib

opencv_imgcodecs310.lib

caffe.lib

caffeproto.lib

caffehdf5.lib

caffehdf5_hl.lib

gflags.lib

glog.lib

leveldb.lib

libprotobuf.lib

libopenblas.dll.a

lmdb.lib

boost_python-vc140-mt-1_61.lib

boost_thread-vc140-mt-1_61.lib

cublas.lib

cuda.lib

cudart.lib

curand.lib

cudnn.lib

 

运行程序,结果如下,

win10+vs2015下caffe安装详解_第6张图片

 

这下高兴了吧,终于可以出去玩耍了。

 

plus:

浮躁的社会,千万不要花了一天,一星期没弄好,就放弃。

给大家一个信心:有位大师说过:在相同的文明程度和种族背景下,每一个正常人的潜意识与意识相加之和,在精神能量意义上基本上是相等的。
 

你可能感兴趣的:(caffe)