- 3090显卡Ktransformer本地部署deepseek R1:70B
SIATdog
ai
这里写自定义目录标题效果完成视频:配置参考依赖安装安装cuda配置环境下载deepseekR170B下载ktransoformer开始安装运行Web启动常见问题runtimeerrordon'tmatch更新cudaERROR:Failedtobuildinstallablewheelsforsomepyproject.tomlbasedprojects(ktransformers)效果完成视频:
- 【nnUnetv2】Code复现
是Winky啊
#项目nnUnet人工智能深度学习
作者提出一种nnUNet(no-new-Net)框架,基于原始的UNet(很小的修改),不去采用哪些新的结构,如相残差连接、dense连接、注意力机制等花里胡哨的东西。相反的,把重心放在:预处理(resampling和normalization)、训练(loss,optimizer设置、数据增广)、推理(patch-based策略、test-time-augmentations集成和模型集成等)、
- 推荐一款免费开源、电脑C盘空间清理等功能强大的系统维护工具的工具--Dism++
小李独爱秋
开源缓存生活7-zip
一、Dism++是什么?Dism++是一款基于Windows底层CBS(ComponentBasedServicing)开发的系统管理工具,提供图形化界面(GUI),无需依赖微软自带的DISM命令行工具即可实现更底层的系统操作。它由初雨团队开发,以免费开源、无广告、轻量级为核心特点,支持WindowsVista至Windows11全版本系统。无论是系统优化、垃圾清理,还是映像编辑、驱动管理,Dis
- 常见经典目标检测算法
109702008
人工智能#深度学习目标检测人工智能
ChatGPT目标检测(ObjectDetection)是计算机视觉领域的一个重要分支,其目的是识别数字图像中的不同对象,并给出它们的位置和类别。近年来,许多经典的目标检测算法被提出并广泛应用。以下是一些常见的经典目标检测算法:1.R-CNN(RegionswithCNNfeatures):R-CNN通过使用区域提议方法(如选择性搜索)首先生成潜在的边界框,然后使用卷积神经网络(CNN)提取特征,
- 目标检测中归一化的目的?
林语微光
kaggle目标检测目标跟踪人工智能
在目标检测任务中,归一化坐标和尺寸时需要除以图像的宽度和高度,主要有以下几个原因:1.统一尺度不同图像可能具有不同的宽度和高度。通过将坐标和尺寸除以图像的宽度和高度,可以将所有图像的标注信息统一到相同的尺度范围([0,1])。这使得模型在训练和推理时能够处理任意尺寸的图像,而不需要关心图像的具体像素尺寸。2.位置和尺寸的相对性归一化后的坐标和尺寸是相对于图像尺寸的,而不是绝对像素值。这种相对性使得
- 《Operating System Concepts》阅读笔记:p449-p459
操作系统
《OperatingSystemConcepts》学习第35天,p449-p459总结,总计11页。一、技术总结1.NVM&SSDFlash-memory-basedNVMisfrequentlyusedinadisk-drive-likecontainer,inwhichcaseitiscalledasolid-statedisk(SSD)(Figure11.3)。2.HDDScheduling
- python 数据可视化TVTK库安装与使用
范哥来了
信息可视化python开发语言
TVTK(Traits-basedVisualizationToolKit)是一个基于Python的可视化库,它为VTK(VisualizationToolkit)提供了一个更易于使用的接口。VTK本身是非常强大的可视化工具,但使用起来可能稍微复杂一些,而TVTK通过简化API来提高易用性。下面我将指导您如何安装TVTK以及一个简单的示例来展示其基本用法。安装TVTKTVTK可以通过pip轻松安装
- YOLO魔改之频率分割模块(FDM)
清风AI
YOLO算法魔改系列YOLO人工智能计算机视觉目标检测python深度学习
目标检测原理目标检测是一种将目标分割和识别相结合的图像处理技术,旨在从图像中定位并识别特定目标。深度学习方法,如FasterR-CNN和YOLO系列,已成为主流解决方案。这些方法通常采用两阶段或单阶段策略,通过卷积神经网络(CNN)提取特征并进行分类和定位。在小目标检测中,为克服分辨率低和特征不明显的问题,模型设计中会特别注重特征融合和多尺度处理,以增强对小目标的感知能力。YOLOv8基础YOLO
- 目标检测YOLO实战应用案例100讲-基于毫米波雷达与摄像头协同的道路目标检测与识别(续)
林聪木
目标检测YOLO人工智能
目录3.2实测数据采集与分析3.2.1回波数据处理3.2.2毫米波雷达数据采集实验3.3基于传统图像特征的目标识别算法3.3.1基于灰度共生矩阵的时频图特征提取3.3.2支持向量机分类器3.3.3实验及结果分析3.4基于卷积神经网络的目标识别算法3.4.1卷积神经网络的基本理论3.4.2卷积神经网络框架设计3.4.3实验及结果分析基于图像的目标检测算法4.1目标检测算法一般流程4.2典型目标检测算
- Python 的 ultralytics 库详解
白.夜
人工智能
ultralytics是一个专注于计算机视觉任务的Python库,尤其以YOLO(YouOnlyLookOnce)系列模型为核心,提供了简单易用的接口,支持目标检测、实例分割、姿态估计等任务。本文将详细介绍ultralytics库的功能、安装方法、核心模块以及使用示例。1.ultralytics库简介ultralytics库由Ultralytics团队开发,旨在为YOLO系列模型提供高效、灵活且易
- 【后端】【django】Django 自带的用户系统与 RBAC 机制
患得患失949
django知识数据库sqlitedjango
Django自带的用户系统与RBAC机制Django自带的用户系统(django.contrib.auth)提供了身份验证(Authentication)和权限管理(Authorization),能够快速实现用户管理、权限控制、管理员后台等功能,同时具备RBAC(基于角色的访问控制,Role-BasedAccessControl)的基本实现。本文将详细介绍Django用户系统的功能、管理员账号创建
- 深入GPU渲染流水管线:从顶点到像素的微观世界
晴空了无痕
图形学GPU渲染管线
现代图形硬件的架构解密与优化实践一、渲染流水线全景解析1.经典渲染管线阶段划分应用阶段几何阶段光栅化阶段像素处理阶段输出合并阶段2.现代GPU架构演进SIMT架构特性:NVIDIASM(StreamingMultiprocessor)vsAMDCU(ComputeUnit)硬件管线并行度:顶点着色器:32线程/Warp像素着色器:8x8像素/Quad延迟渲染革命:Tile-BasedDeferre
- 【保姆级视频教程(一)】YOLOv12环境配置:从零到一,手把手保姆级教程!| 小白也能轻松玩转目标检测!
一只云卷云舒
YOLOv12保姆级通关教程YOLOYOLOv12flashattentionGPU计算能力算力
【2025全站首发】YOLOv12环境配置:从零到一,手把手保姆级教程!|小白也能轻松玩转目标检测!文章目录1.FlashAttentionWindows端WHL包下载1.1简介1.2下载链接1.3国内镜像站1.4安装方法2.NVIDIAGPU计算能力概述2.1简介2.2计算能力版本与GPU型号对照表2.2.1CUDA-EnabledDatacenterProducts2.2.2CUDA-Enab
- yolov8的第一次实验报告
算法宇宙
YOLO人工智能计算机视觉
1.实验概述实验名称:占道经营目标检测模型实验目标:提高模型的精确率(Precision)和召回率(Recall),使其接近1。实验日期:[2025-01-16]2.数据集数据集名称:[datasets]数据集大小:[2.68Gb]数据集描述:[数据集主要分两个类别:zdjy_ld,zdjy_gd]注释:占道经营流动,占道经营固定3.模型配置3.1基础配置·模型类型:YOLOv8·预训练模型:YO
- YOLOv8 的简介 及C#中如何简单应用YOLOv8
码上有潜
YOLOv8YOLO
YOLOv8是YOLO(YouOnlyLookOnce)系列中的最新版本,是一种用于目标检测和图像分割的深度学习模型。YOLO模型以其快速和准确的目标检测性能而著称,广泛应用于实时应用程序中。主要特点高效性:YOLOv8在保持高检测速度的同时,进一步提高了检测精度。端到端训练:可以直接从图像输入端到分类结果输出,简化了训练和部署过程。改进的架构:包括更深的网络结构、更复杂的特征提取方法以及更高效的
- Yolov11目标检测(ultralytics)
@M_J_Y@
目标检测YOLO目标检测人工智能
Yolov11目标检测(ultralytics)1.克隆仓库2.安装环境依赖3.训练、验证、推理以及onnx模型导出1.克隆仓库从官网下载Yolov11到本地。
[email protected]:ultralytics/ultralytics.git2.安装环境依赖pipinstall-e.-ihttps://pypi.mirrors.ustc.edu.cn/simple/3.训练、验证
- 使用 labelImg 制作YOLO系列目标检测数据集(
2401_89791028
YOLO目标检测人工智能
文章转载自K同学,谨防原文失效可参考link1和link2和link3LabelImg介绍LabelImg支持文件夹的导入,在标完一张后,在左侧选择NextImage就可以切换到下一张继续了。输出格式部分,目前LabelImg支持YOLO和PascalVOC2种格式,前者标签文件后缀是.txt件,而后者标签文件后缀是.xml件。标签保存在对应的labels文件夹下,与images中的图片文件名一一
- KVM 内核优化全攻略:全方位释放服务器性能
TechStack 创行者
KVMLinux服务器运维KVM
KVM内核优化全攻略:全方位释放服务器性能在云计算、大数据、人工智能等前沿技术蓬勃发展的当下,服务器性能面临着前所未有的挑战。KVM(Kernel-basedVirtualMachine)作为开源虚拟化解决方案,凭借高效稳定的特性,广泛应用于企业数据中心。要充分发挥KVM性能优势,对其内核进行全面优化势在必行。本文将为你详细介绍一套涵盖通用优化及其他关键优化点的完整KVM内核优化方案,并结合实际案
- YOLOv8 改进:添加 GAM 注意力机制
鱼弦
人工智能时代YOLO
YOLOv8改进:添加GAM注意力机制引言在目标检测领域,YOLO(YouOnlyLookOnce)网络因其速度和准确性被广泛应用。然而,随着场景的复杂化,仅仅依靠卷积特征可能不足以捕捉图像中的重要信息。引入注意力机制,如GAM(GlobalAttentionMechanism),可以有效提高模型对关键区域的关注,从而提升检测性能。技术背景GAM是一种全局注意力机制,通过全局信息聚合和自适应权重分
- 【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?
努力毕业的小土博^_^
AI算法题库人工智能计算机视觉算法深度学习神经网络目标检测
【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?文章目录【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?前言多尺度训练核心思想:优点与注意点:多尺度测试核心思想:优点与注意点:综合作用参考示例总结欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上
- 从0到1构建AI深度学习视频分析系统--基于YOLO 目标检测的动作序列检查系统:(2)消息队列与消息中间件
shiter
人工智能系统解决方案与技术架构人工智能深度学习音视频
文章大纲原始视频队列Python内存视频缓存优化方案(4GB以内)一、核心参数设计二、内存管理实现三、性能优化策略四、内存占用验证五、高级优化技巧六、部署建议检测结果队列YOLO检测结果队列技术方案一、技术选型矩阵二、核心实现代码三、性能优化策略四、可视化方案对比五、部署建议逻辑判定队列时间片图论时间序列大模型引入参考文献原始视频队列想要在单机内存中缓存1-5分钟的视频片段,python技术栈的话
- YOLOv5+UI界面在车辆检测中的应用与实现
深度学习&目标检测实战项目
YOLOv5实战项目YOLOui分类数据挖掘目标跟踪人工智能
1.引言随着智能交通系统(ITS)的快速发展,车辆检测已成为计算机视觉领域的重要研究方向。车辆检测技术广泛应用于交通流量监控、车辆违章抓拍、无人驾驶等场景中。近年来,深度学习技术的突破,特别是卷积神经网络(CNN)的崛起,使得目标检测技术取得了显著进展。其中,YOLO(YouOnlyLookOnce)系列模型以其高效的实时检测能力和出色的性能成为车辆检测领域的首选方法之一。在本文中,我们将基于YO
- MIE 1622H Risk-Based and Robust
后端
MIE1622H:Assignment2–Risk-BasedandRobustPortfolioSelectionStrategiesDr.OleksandrRomanko,MohammadrezaMohammadiFebruary10,2025Due:Friday,March7,2025,notlaterthan11:59p.m.UsePythonforallMIE1622Hassignmen
- YOLO优化之扫描融合模块(SimVSS Block)
清风AI
人工智能计算机视觉YOLO目标检测深度学习目标跟踪
研究背景在自动驾驶技术快速发展的背景下,目标检测作为其核心组成部分面临着严峻挑战。驾驶场景中目标尺度和大小的巨大差异,以及视觉特征不显著且易受噪声干扰的问题,对辅助驾驶系统的安全性构成了潜在威胁。传统的卷积神经网络(CNN)虽然在目标检测领域取得了显著进展,但仍存在局限性,如局部关注性导致难以有效检测不同尺度的目标。为克服这些问题,研究人员开始探索将状态空间模型(SSM)引入目标检测领域,以期提高
- 深入探究YOLO系列的骨干网路
编码实践
YOLO深度学习计算机视觉
深入探究YOLO系列的骨干网路YOLO系列是目标检测领域中非常知名的算法。其通过将整个图像作为输入,并且直接在图像上通过一个单独的神经网络输出每个检测框的类别预测和边界框信息。为了更好地理解YOLO系列,我们需要先了解它所使用的骨干网路。骨干网络是深度学习模型中的核心部分,负责提取图像的特征。如今常用的骨干网络有VGG、ResNet和MobileNet等。YOLO系列算法采用的是Darknet骨干
- 《Hello YOLOv8从入门到精通》4, 模型架构和骨干网络Backbone调优实践
Jagua
YOLO
YOLOv8是由Ultralytics开发的最先进的目标检测模型,其模型架构细节包括骨干网络(Backbone)、颈部网络(Neck)和头部网络(Head)三大部分。一、骨干网络(Backbone)Backbone部分负责特征提取,采用了一系列卷积和反卷积层,同时使用了残差连接和瓶颈结构来减小网络的大小并提高性能。YOLOv8的Backbone参考了CSPDarkNet结构,的增强版本,并结合了其
- mysql安装启动报错_mysql安装/启动报错汇总
weixin_29179583
mysql安装启动报错
2016/9/6补充初始化报错:#/usr/local/mysql/scripts/mysql_install_db--user=mysql--basedir=/usr/local/mysql/--datadir=/data/mysqldb/InstallingMySQLsystemtables...2016-09-0617:29:160[Warning]TIMESTAMPwithimplicit
- RapidOCRPDF 项目教程
侯深业Dorian
RapidOCRPDF项目教程RapidOCRPDFBasedonRapidOCR,extractthePDFcontent.项目地址:https://gitcode.com/gh_mirrors/ra/RapidOCRPDF1.项目介绍RapidOCRPDF是一个基于RapidOCR的开源项目,旨在快速提取PDF文件中的文字内容。该项目支持多种类型的PDF,包括扫描版PDF、加密版PDF以及可直
- NPU的应用场景:从云端到边缘
绿算技术
NPU架构介绍缓存人工智能科技深度学习
NPU的应用场景非常广泛,主要包括以下几个方面:1.云计算与数据中心AI推理服务:在云端提供高效的AI推理服务,例如图像识别、语音识别。模型训练加速:在大规模训练任务中,NPU可以作为加速单元,提升训练效率。2.边缘计算智能摄像头:在安防监控中,NPU可以实时处理视频流,实现目标检测和跟踪。智能音箱:在语音助手中,NPU可以加速语音识别和自然语言处理任务。3.自动驾驶实时感知:NPU可以加速自动驾
- AUTOSAR从入门到精通-汽车电子电气架构(EEA)
格图素书
汽车
目录前言算法原理EEA发展历程->分布式架构(distributed):->基于域的集中式架构(DCUbasedcentralized):->基于域融合的带状架构(DCUfusionbasedzonal):什么是电子电气架构?EEA的特点EEA发展的三大阶段特征第一阶段:分布式架构第二阶段:基于域的集中式架构(转型中)第三阶段:基于域融合的带状架构(未来趋势)车载电子电气架构作用EEA开发工作内容
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><