Natural Language Inference--自然语言推理

自然语言推理是推断两个句子之间的关系,比如一个是前提的句子和一个是假设的句子,他们的关系可以是蕴涵,中立和矛盾。

数据集:The Stanford Natural Language Inference (SNLI) Corpus

https://nlp.stanford.edu/projects/snli/

发展状况:

Publication  Model Parameters  Train (% acc)  Test (% acc)

Feature-based models

Bowman et al. '15 Unlexicalized features   49.4 50.4
Bowman et al. '15 + Unigram and bigram features   99.7 78.2

Sentence vector-based models

Bowman et al. '15 100D LSTM encoders 220k 84.8 77.6
Bowman et al. '16 300D LSTM encoders 3.0m 83.9 80.6
Vendrov et al. '15 1024D GRU encoders w/ unsupervised 'skip-thoughts' pre-training 15m 98.8 81.4
Mou et al. '15 300D Tree-based CNN encoders 3.5m 83.3 82.1
Bowman et al. '16 300D SPINN-PI encoders 3.7m 89.2 83.2
Yang Liu et al. '16 600D (300+300) BiLSTM encoders 2.0m 86.4 83.3
Munkhdalai & Yu '16b 300D NTI-SLSTM-LSTM encoders 4.0m 82.5 83.4
Yang Liu et al. '16 600D (300+300) BiLSTM encoders with intra-attention 2.8m 84.5 84.2
Conneau et al. '17 4096D BiLSTM with max-pooling 40m 85.6 84.5
Munkhdalai & Yu '16a 300D NSE encoders 3.0m 86.2 84.6
Qian Chen et al. '17 600D (300+300) Deep Gated Attn. BiLSTM encoders (code) 12m 90.5 85.5
Tao Shen et al. '17 300D Directional self-attention network encoders (code) 2.4m 91.1 85.6
Jihun Choi et al. '17 300D Gumbel TreeLSTM encoders 2.9m 91.2 85.6
Nie and Bansal '17 300D Residual stacked encoders 9.7m 89.8 85.7
Anonymous '18 1200D REGMAPR (Base+Reg) 85.9
Yi Tay et al. '18 300D CAFE (no cross-sentence attention) 3.7m 87.3 85.9
Jihun Choi et al. '17 600D Gumbel TreeLSTM encoders 10m 93.1 86.0
Nie and Bansal '17 600D Residual stacked encoders 29m 91.0 86.0
Tao Shen et al. '18 300D Reinforced Self-Attention Network 3.1m 92.6 86.3
Im and Cho '17 Distance-based Self-Attention Network 4.7m 89.6 86.3
Seonhoon Kim et al. '18 Densely-Connected Recurrent and Co-Attentive Network (encoder) 5.6m 91.4 86.5
Talman et al. '18 600D Hierarchical BiLSTM with Max Pooling (HBMP, code) 22m 89.9 86.6
Qian Chen et al. '18 600D BiLSTM with generalized pooling 65m 94.9 86.6
Kiela et al. '18 512D Dynamic Meta-Embeddings 9m 91.6 86.7
Deunsol Yoon et al. '18 600D Dynamic Self-Attention Model 2.1m 87.3 86.8
Deunsol Yoon et al. '18 2400D Multiple-Dynamic Self-Attention Model 7.0m 89.0 87.4

Other neural network models

Rocktäschel et al. '15 100D LSTMs w/ word-by-word attention 250k 85.3 83.5
Pengfei Liu et al. '16a 100D DF-LSTM 320k 85.2 84.6
Yang Liu et al. '16 600D (300+300) BiLSTM encoders with intra-attention and symbolic preproc. 2.8m 85.9 85.0
Pengfei Liu et al. '16b 50D stacked TC-LSTMs 190k 86.7 85.1
Munkhdalai & Yu '16a 300D MMA-NSE encoders with attention 3.2m 86.9 85.4
Wang & Jiang '15 300D mLSTM word-by-word attention model 1.9m 92.0 86.1
Jianpeng Cheng et al. '16 300D LSTMN with deep attention fusion 1.7m 87.3 85.7
Jianpeng Cheng et al. '16 450D LSTMN with deep attention fusion 3.4m 88.5 86.3
Parikh et al. '16 200D decomposable attention model 380k 89.5 86.3
Parikh et al. '16 200D decomposable attention model with intra-sentence attention 580k 90.5 86.8
Munkhdalai & Yu '16b 300D Full tree matching NTI-SLSTM-LSTM w/ global attention 3.2m 88.5 87.3
Zhiguo Wang et al. '17 BiMPM 1.6m 90.9 87.5
Lei Sha et al. '16 300D re-read LSTM 2.0m 90.7 87.5
Yichen Gong et al. '17 448D Densely Interactive Inference Network (DIIN, code) 4.4m 91.2 88.0
McCann et al. '17 Biattentive Classification Network + CoVe + Char 22m 88.5 88.1
Chuanqi Tan et al. '18 150D Multiway Attention Network 14m 94.5 88.3
Xiaodong Liu et al. '18 Stochastic Answer Network 3.5m 93.3 88.5
Ghaeini et al. '18 450D DR-BiLSTM 7.5m 94.1 88.5
Yi Tay et al. '18 300D CAFE 4.7m 89.8 88.5
Qian Chen et al. '17 KIM 4.3m 94.1 88.6
Qian Chen et al. '16 600D ESIM + 300D Syntactic TreeLSTM (code) 7.7m 93.5 88.6
Peters et al. '18 ESIM + ELMo 8.0m 91.6 88.7
Boyuan Pan et al. '18 300D DMAN 9.2m 95.4 88.8
Zhiguo Wang et al. '17 BiMPM Ensemble 6.4m 93.2 88.8
Yichen Gong et al. '17 448D Densely Interactive Inference Network (DIIN, code) Ensemble 17m 92.3 88.9
Seonhoon Kim et al. '18 Densely-Connected Recurrent and Co-Attentive Network 6.7m 93.1 88.9
Zhuosheng Zhang et al. '18 SLRC 6.1m 89.1 89.1
Qian Chen et al. '17 KIM Ensemble 43m 93.6 89.1
Ghaeini et al. '18 450D DR-BiLSTM Ensemble 45m 94.8 89.3
Peters et al. '18 ESIM + ELMo Ensemble 40m 92.1 89.3
Yi Tay et al. '18 300D CAFE Ensemble 17.5m 92.5 89.3
Chuanqi Tan et al. '18 150D Multiway Attention Network Ensemble 58m 95.5 89.4
Boyuan Pan et al. '18 300D DMAN Ensemble 79m 96.1 89.6
Radford et al. '18 Fine-Tuned LM-Pretrained Transformer 85m 96.6 89.9
Seonhoon Kim et al. '18 Densely-Connected Recurrent and Co-Attentive Network Ensemble 53.3m 95.0 90.1

 

你可能感兴趣的:(自然语言处理,论文)