- 图像识别与应用
狂踹瘸子那条好脚
python
图像识别作为人工智能领域的重要分支,近年来取得了显著进展,其中卷积神经网络(CNN)功不可没。CNN凭借其强大的特征提取能力,在图像分类、目标检测、人脸识别等任务中表现出色,成为图像识别领域的核心技术。一、卷积神经网络:图像识别的利器CNN是一种专门处理网格状数据的深度学习模型,其结构设计灵感来源于生物视觉系统。与全连接神经网络不同,CNN通过卷积层、池化层等结构,能够有效提取图像的局部特征,并逐
- 【机器学习】基于3D CNN通过CT图像分类预测肺炎
MUKAMO
AIPython应用机器学习深度学习人工智能神经网络3DCNN
1.引言1.1.研究背景在医学诊断中,医生通过分析CT影像来预测疾病时,面临一些挑战和局限性:图像信息的广度与复杂性:CT扫描生成的大量图像对医生来说既是信息的宝库也是处理上的负担。每组CT数据可能包含数百张切片,医生必须迅速审阅这些图像,以便捕捉到病变的微小细节。这种庞大的信息量要求医生在有限的时间内做出精准诊断,但同时也增加了漏诊或误诊的风险。部分容积效应也可能模糊小病变的边界,使得准确诊断变
- 什么是神经网络
jerryjee
神经网络与深度学习神经网络深度学习机器学习人工智能python
概述简而言之,神经网络就是函数:输入数据,输出结果。函数我们以MNIST手写数字图像识别为例,来定义一下对应的函数形式:任务类型:图像分类输入:一张图像包含28x28=784个像素,每个像素用一个实数表示输出:0-9任务描述:从图像张识别出唯一的数字函数定义y=f(x1,x2,...,x784)y=f(x_1,x_2,...,x_{784})y=f(x1,x2,...,x784)xi∈R,i=1,
- 【深度学习】计算机视觉(CV)-图像分类-ResNet(Residual Network,残差网络)
IT古董
深度学习人工智能深度学习计算机视觉分类
ResNet(ResidualNetwork,残差网络)是一种深度卷积神经网络(CNN)架构,由何恺明(KaimingHe)等人在2015年提出,最初用于ImageNet竞赛,并在分类任务上取得了冠军。ResNet的核心思想是残差学习(ResidualLearning),它通过跳跃连接(SkipConnections)解决了深度神经网络训练中的梯度消失和梯度爆炸问题,使得非常深的网络(如50层、1
- 计算机视觉核心任务
飞瀑
AIyolo
1.计算机视频重要分类计算机视觉的重要任务可以大致分为以下几类:1.图像分类(ImageClassification)识别图像属于哪个类别,例如猫、狗、汽车等。应用场景:物品识别、人脸识别、医疗影像分类。代表模型:ResNet、EfficientNet、ViT(VisionTransformer)。2.目标检测(ObjectDetection)识别图像中目标的位置(边界框)及类别。应用场景:自动驾
- 图像分类与目标检测算法
BugNest
AI算法分类目标检测ai人工智能图像处理
在计算机视觉领域,图像分类与目标检测是两项至关重要的技术。它们通过对图像进行深入解析和理解,为各种应用场景提供了强大的支持。本文将详细介绍这两项技术的算法原理、技术进展以及当前的落地应用。一、图像分类算法图像分类是指将输入的图像划分为预定义的类别之一。这一过程的核心在于特征提取和分类器的设计。1.特征提取特征提取是图像分类的第一步,其目标是从图像中提取出能够区分不同类别的关键信息。传统的特征提取方
- Kivy教程大全之 使用 NumPy 和 Kivy 对 Android 设备进行图像分类
知识大胖
Python源码大全pythonkivynumpy
文章简介ANN架构。使用KV语言创建小部件树。创建Kivy应用程序。使用正确的NumPy版本。构建Android应用程序。了解更多信息本教程的重点是构建一个调用预训练的ANN来对图像进行分类的Android应用程序。这里不深入讨论准备数据集、构建、训练和优化ANN的步骤。在本教程中将仅对它们进行简要讨论。但不要担心——在不了解这些细节的情况下遵循本教程中的想法是可以的。如果您想了解它们,请查看我之
- 深度学习练手小例子——cifar10数据集分类问题
☆cwlulu
深度学习分类人工智能
CIFAR-10是一个经典的计算机视觉数据集,广泛用于图像分类任务。它包含10个类别的60,000张彩色图像,每张图像的大小是32x32像素。数据集被分为50,000张训练图像和10,000张测试图像。每个类别包含6,000张图像,具体类别包括:飞机(airplane)汽车(automobile)鸟(bird)猫(cat)鹿(deer)狗(dog)青蛙(frog)马(horse)船(ship)卡车
- DeepSeek计算机视觉(Computer Vision)基础与实践
Evaporator Core
#DeepSeek快速入门计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)是人工智能领域的一个重要分支,专注于让计算机理解和处理图像和视频数据。计算机视觉技术广泛应用于图像分类、目标检测、图像分割、人脸识别等场景。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练计算机视觉模型。本文将详细介绍如何使用DeepSeek进行计算机视觉的基础与实践,并通过代码示例帮助你掌握这些技巧。1.计算机视觉的基本概念计算机视觉的
- JavaCV进阶opencv图像处理:扫描并识别视频中的二维码
eguid_1
#JavaCV进阶之opencvJavaCV图像处理合集扫描视频二维码opencv识别二维码javacv检测二维码java扫描检测二维码识别二维码
人脸检测识别javacv进阶opencv图像检测/识别系列目录人脸检测识别JavaCV进阶opencv图像处理:摄像头图像人脸检测JavaCV进阶opencv图像处理:ffmpeg视频图像画面人脸检测JavaCV进阶opencv图像处理:批量人脸图像分类训练JavaCV进阶opencv图像处理:摄像头图像人脸识别二维码识别二维码识别JavaCV进阶opencv图像处理:扫描并识别摄像头中的二维码
- 轻量化网络模型调研报告
云雨、
网络人工智能深度学习
一、轻量化网络的为何诞生 深度神经网络模型被广泛应用在图像分类、物体检测,目标跟踪等计算机视觉任务中,并取得了巨大成功。随着时代发展,人们更加关注深度神经网络的实际应用性能,人工智能技术的一个趋势是在边缘端平台上部署高性能的神经网络模型,并能在真实场景中实时(>30帧)运行,如移动端/嵌入式设备,这些平台的特点是内存资源少,处理器性能不高,功耗受限,这使得目前精度最高的模型根本无法在这些平台进行
- 【深度学习实战:kaggle自然场景的图像分类-----使用keras框架实现vgg16的迁移学习】
机器学习司猫白
深度学习分类keras
Hello大家好,今天和大家分享一个kaggle自然场景的图像分类的竞赛,使用的keras框架实现vgg16的迁移学习完成自然场景分类,对数据集感兴趣的同学可以在上方下载数据集。项目简介本次数据集来自kaggle,该数据集包括自然场景的图像。模型应该预测每个图像的正确标签。您的目标是实现分类问题的高精度。数据集train.csv-训练集test.csv-测试集SceneImages-图像文件夹训练
- 实践深度学习:构建一个简单的图像分类器
是Dream呀
深度学习人工智能
引言深度学习在图像识别领域取得了巨大的成功。本文将指导你如何使用深度学习框架来构建一个简单的图像分类器,我们将以Python和TensorFlow为例,展示从数据准备到模型训练的完整流程。环境准备在开始之前,请确保你的环境中安装了以下工具:Python3.xTensorFlow2.xNumPyMatplotlib(用于数据可视化)你可以通过以下命令安装所需的库:pipinstalltensorfl
- 【Python】成功解决ModuleNotFoundError: No module named ‘openpyxl‘
高斯小哥
BUG解决方案合集python新手入门学习
【Python】成功解决ModuleNotFoundError:Nomodulenamed‘openpyxl’欢迎进入我的个人主页,我是高斯小哥!博主档案:广东某985本硕,SCI顶刊一作,深耕深度学习多年,熟练掌握PyTorch框架。技术专长:擅长处理各类深度学习任务,包括但不限于图像分类、图像重构(去雾\去模糊\修复)、目标检测、图像分割、人脸识别、多标签分类、重识别(行人\车辆)、无监督域适
- 基于PaddleX的机器学习开发指南
大霸王龙
系统分析业务人工智能paddlepaddle
基于PaddleX的机器学习开发指南目录安装与初始化图像分类模块目标检测模块视频分割模块其他模块模型选择与配置一、安装与初始化为了使用PaddleX进行机器学习开发,请按照以下步骤安装所需依赖项:步骤1:安装依赖项运行以下命令安装相关依赖项:cd/root/.local/bin&&bashinstall-dependencies.sh或者直接复制以下内容到终端窗口执行:-pipinstall--u
- 实现智能教室能耗监测与管理系统的详细方案
max500600
python算法python
以下是一个完整的实现智能教室能耗监测与管理系统的详细方案,涵盖深度学习模型研发、教室场景适应性分析、系统架构设计、前端展示、后端服务以及测试评估等方面,使用Python语言完成。1.深度学习模型研发1.1数据准备首先,你需要收集大量的教室照片,并对其中的关键元素(如灯、空调、电脑等)进行标注,标注信息包括元素的位置(用于目标检测)和状态(用于图像分类)。可以使用LabelImg等工具进行标注,标注
- 基于“感知–规划–行动”的闭环系统架构
由数入道
人工智能系统架构人工智能智能体
1.感知(Perception)1.1多模态数据采集与预处理传感器系统Agent的感知层通常由多种传感器组成,支持采集多种形式的数据:视觉:采用摄像头、深度传感器,通过卷积神经网络(CNN)、视觉Transformer等模型实现目标检测、图像分类、场景理解。听觉:利用麦克风阵列、声学传感器,结合声纹识别、语音识别(如基于Transformer或RNN的模型)技术处理音频信息。文本与语义信息:通过文
- 【Pytorch实战教程】让数据飞轮转起来:PyTorch Dataset与Dataloader深度指南
若北辰
Pytorch实战教程pytorch人工智能python
文章目录让数据飞轮转起来:PyTorchDataset与Dataloader深度指南一、为什么需要数据管理组件?二、Dataset:数据集的编程接口2.1自定义Dataset三要素2.2实战案例:图像分类数据集三、Dataloader:高效数据流水线3.1核心参数解析3.2数据流可视化3.3多卡训练支持四、综合实战:构建完整数据流五、高级技巧与常见问题5.1内存优化技巧5.2常见错误排查5.3性能
- python实现yolo目标检测_目标检测|YOLO原理与实现
weixin_39709194
码字不易,欢迎给个赞!欢迎交流与转载,文章会同步发布在公众号:机器学习算法全栈工程师(Jeemy110)最新的YOLOv2和YOLOv3:小白将:目标检测|YOLOv2原理与实现(附YOLOv3)zhuanlan.zhihu.com前言当我们谈起计算机视觉时,首先想到的就是图像分类,没错,图像分类是计算机视觉最基本的任务之一,但是在图像分类的基础上,还有更复杂和有意思的任务,如目标检测,物体定位,
- 深度学习的一些方向
xinpao
深度学习人工智能
深度学习的一些方向目录深度学习的一些方向一、多模态1.特征提取(featureextraction)2.文本转图像3.可视化问题回答二、计算机视觉1.深度估计(depthestimation)2.图像分类(imageclassification)3.图片分割(ImageSegmentation)4.图像转图像(imagetoimage)5.物体检测(objectdetection)6.视频分类(V
- MobileNetV2: Inverted Residuals and Linear Bottlenecks
TAICHIFEI
Paper人工智能计算机视觉
Link:https://arxiv.org/abs/1801.04381这篇文章是一篇关于MobileNetV2的学术论文,主要介绍了MobileNetV2的架构设计及其在图像分类、目标检测和语义分割任务中的应用。以下是对这些核心内容的简要概述:MobileNetV2架构设计:提出了一种新的神经网络模块——倒残差结构(InvertedResiduals),其中的快捷连接位于瓶颈层之间。使用轻量级
- 探索深度学习:开启智能新时代
顾漂亮
深度学习人工智能机器学习
目录深度学习究竟是什么?深度学习的“三驾马车”:数据、模型与算力深度学习的前沿模型架构深度学习在各领域的深度应用深度学习的挑战与应对策略深度学习的未来展望在当今科技飞速发展的时代,深度学习无疑是最炙手可热的领域之一。它宛如一把神奇的钥匙,开启了通往智能世界的大门,从语音识别到图像分类,从自动驾驶到医疗诊断,深度学习的身影无处不在,正深刻地改变着我们的生活与工作方式。深度学习究竟是什么?深度学习隶属
- 二值连接:深度神经网络的轻量级革命
步子哥
dnn人工智能神经网络
引言:深度学习的下一步是什么?深度神经网络(DeepNeuralNetworks,DNN)近年来在语音识别、图像分类和自然语言处理等领域取得了令人瞩目的成就。然而,这些突破背后的一个关键推手是计算能力的飞速提升,尤其是图形处理单元(GPU)的广泛应用。然而,随着模型规模和数据量的增长,深度学习的计算需求也在不断攀升。与此同时,移动设备和嵌入式系统的快速发展对低功耗、高效能的深度学习算法提出了更高的
- YOLOv3在工业生产中产品瑕疵检测的可行性分析
Y.C.~
python机器学习图像处理
图像中瑕疵检测1.概述瑕疵检测是机器视觉任务中的一条分支,在技术发展的过程中对于图片处理的方式往往使用CNN(卷积神经网络)作为处理模型,毫无疑问CNN的在处理图像方面有着独特的优势,通过设置卷积核我们可以使得计算机提取图像的特征数据,再通过延伸纵向的网络模型增加网络神经元的个数,可以很好地让网络模型识别图片中的内容,所以说CNN在图像分类和识别当中都有着很好的效果,在实践过程中也有着很不错的表现
- PyTorch 训练一个分类器
亚里
平台工具类pytorch训练网络
文章目录0前言1加载和规范化CIFAR102定义一个卷积网络3定义损失函数和优化器4训练网络5测试网络6在GPU上训练模型参考资料0前言 TRAINGINGACLASSIFIER这篇教程很清楚的描述了如何使用PyTorch训练一个用于图像分类的卷积网络模型。这里记录一下,学习一波写法,供以后查阅,自己跑的项目在github上,稍微修改了一下训练策略,能使分类精度从53%提升到65%;并且增加了训
- 动手学PyTorch建模与应用:从深度学习到大模型
王国平
pytorch人工智能数据分析python数据挖掘
在人工智能时代,机器学习技术日新月异,深度学习是机器学习领域中一个全新的研究方向和应用热点,它是机器学习的一种,也是实现人工智能的必由之路。深度学习的出现不仅推动了机器学习的发展,而且促进了人工智能技术的革新,已经被成功应用在语音识别、图像分类识别、地球物理、大语言模型等领域,具有巨大的发展潜力和价值。本书是一本带领读者快速学习PyTorch并将其运用于深度学习建模方向的入门指南,重点介绍了基于P
- Python 图像处理进阶:特征提取与图像分类
极客代码
玩转Python玩转AI开发语言python图像处理人工智能
特征提取特征提取是计算机视觉中的一个重要环节,它可以从图像中提取出有助于后续处理的特征,比如用于识别和分类的关键点、纹理等。常见的特征提取方法包括SIFT、SURF和ORB等。SIFT(尺度不变特征变换)SIFT是一种用于检测图像中的关键点及其描述符的方法。SIFT特征具有尺度不变性和旋转不变性,适用于图像匹配和识别。原理:SIFT通过在不同尺度的空间内寻找极值点来检测关键点,并利用梯度方向的直方
- 《AI逆袭:科技与人类的终极对决,谁才是未来的主宰?》
云边有个稻草人
热门文章人工智能科技
目录第一章:人工智能的崛起1.1AI技术的基础与发展1.2AI的技术分支1.3AI的应用领域第二章:AI与人类的关系2.1AI对就业的影响2.2AI与伦理问题2.3AI与创意的结合第三章:AI的未来:谁才是主宰?3.1AI与人类的合作3.2AI的自主性与未来3.3AI与社会的融合第四章:AI技术实践——代码示例4.1图像分类(使用TensorFlow)结语导语人工智能(AI)无疑是当前科技发展的热
- 计算机视觉领域的轻量化模型——GhostNet 模型
DuHz
边缘计算轻量化模型计算机视觉人工智能算法深度学习神经网络边缘计算网络
GhostNet模型详解GhostNet是一个高效的轻量化卷积神经网络模型,专为资源受限的设备(如移动设备和嵌入式系统)设计。它的核心创新是Ghost模块,该模块通过生成更多的特征图来减少计算资源消耗。GhostNet适用于实时计算任务,如图像分类和物体检测,同时在保持较高准确率的基础上,优化了计算效率。目录GhostNet背景Ghost模块概述GhostNet网络架构Ghost模块的数学原理Gh
- 2024年开源数据集地址汇总包含最新最全数据集在这你可以找到任何想要数据集
萌萌哒240
深度学习目标跟踪人工智能计算机视觉
目标检测数据集和图像分类数据集是计算机视觉领域的两大重要资源,它们为训练和评估各种视觉模型提供了关键的数据支持。目标检测数据集主要用于训练模型以识别和定位图像中的特定物体。这类数据集通常包含大量的标注图像,每张图像中都标记了多个物体的位置和类别。例如,COCO(CommonObjectsinContext)数据集就是一个常用的目标检测数据集,它包含了80个类别的日常物体,如人、车、动物等,并提供了
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟