- 2x2矩阵教程
2x2矩阵教程1.简介2x2矩阵是线性代数中的基本概念,用于表示二维线性变换。本教程将介绍如何使用C++实现2x2矩阵的基本运算,包括矩阵加减、乘法、行列式、逆矩阵等操作。2.代码实现2.1头文件(matrix2x2.h)#ifndefMATRIX2X2_H#defineMATRIX2X2_H#include#include#includenamespacemath{namespacelinear
- 学习人工智能开发的详细指南
Ws_
学习人工智能python
一、引言人工智能(AI)开发是一个充满挑战与机遇的领域,它融合了数学、计算机科学、统计学、认知科学等多个学科的知识。随着大数据、云计算和深度学习技术的快速发展,AI已经成为推动社会进步和产业升级的关键力量。本文将为初学者提供一份详细的学习指南,帮助大家逐步掌握AI开发的核心技能。二、基础知识准备数学基础:线性代数:理解向量、矩阵、线性变换等基本概念,掌握矩阵运算和特征值分解等技巧。概率论与统计学:
- 大学专业科普 | 计算智能、信息学与大数据
鸭鸭鸭进京赶烤
大数据
一、专业背景随着信息技术的飞速发展,数据的产生速度呈爆炸式增长,传统数据处理技术已经无法满足如此庞大的数据量和复杂的数据类型,大数据专业应运而生,旨在培养能够应对大数据挑战的专业人才。二、主要课程内容数学基础课程高等数学、概率论与数理统计、线性代数是大数据分析的核心数学基础,为数据处理、算法优化和模型构建提供必要的理论支持。计算机基础课程数据结构与算法、计算机网络、操作系统是大数据技术的重要支撑,
- 大学专业科普 | 人工智能、物联网和云计算技术
鸭鸭鸭进京赶烤
人工智能物联网云计算5G信号处理信息与通信网络
一、专业概述人工智能专业是一门融合计算机科学、数学、信息学等多学科知识的交叉学科。它旨在培养学生掌握人工智能领域的基本理论、方法和技能,以应对人工智能在各个领域的应用需求和发展挑战。二、主要课程基础课程:包括高等数学、线性代数、概率论与数理统计、离散数学等数学基础课程,为人工智能算法提供理论支撑;以及数据结构、算法设计与分析、计算机组成原理、操作系统、计算机网络等计算机科学基础课程,帮助学生理解人
- 线性代数小述(三)
天宫风子
线性代数决策树机器学习
线性代数小述(三)byAmamiyaFuko此去经年返,安知胡不归?前言FU⭐️KO首先需要对上一篇的线性组合的概念做一个更正,然后是考虑行列式相关的内容。目录1.线性组合2.行列式-行列式运算的定义-拉普拉斯展开线性组合线性组合是对一个向量的分解。考虑一个二维空间,若某一向量与两个向量在同在该空间中,且这两个向量是线性无关的(不平行的),则必然有这个向量对于后两个向量的线性组合表示,如Av1ˇ+
- 【图像处理基石】如何入门大规模三维重建?
小米玄戒Andrew
图像处理基石深度学习人工智能三维重建大规模三维重建立体视觉大模型LLM
入门大规模三维重建需要从基础理论、核心技术到实践工具逐步深入,同时需关注该领域的经典工作和前沿进展。以下是分阶段的入门路径及值得重点学习的工作:一、基础理论与前置知识大规模三维重建的核心是从海量图像或传感器数据中恢复场景的三维结构,涉及计算机视觉、摄影测量、图形学、最优化等多个领域,需先掌握以下基础:数学基础线性代数:矩阵运算、特征值分解(用于相机姿态估计)、奇异值分解(SVD,用于基础矩阵求解)
- 2020年10月17日,panda出生的第558天
小妖怪潘达
今天麻麻有点情绪失控,把粑粑骂了一顿,因为感觉线性代数还是一塌糊涂,简直没办法面对考试,突然又看到了粑粑之前跟一个公司签的代理合同,气不打一处来,所以就对粑粑好凶好凶,好在粑粑并没有反抗,低眉顺眼的接受麻麻的狂风暴雨,答应麻麻提出的草率要求,麻麻居然不再生气,甚至还有一点内疚,麻麻知道粑粑为了我们将来,一直特别努力,可是如今的一切是好不容易得来的,麻麻战战兢兢,如履薄冰
- 【证明】对极几何:本质矩阵内在性质
Powerful_QI
slam线性代数矩阵
--这是目录--1.本质矩阵内在性质表述2.预备知识2.1线性代数基础2.1.1奇异值与特征值的关系2.1.2矩阵加减单位阵后特征值的变化2.2引理:一个常用的矩阵变换3.证明1.本质矩阵内在性质表述 本质矩阵(EssentialMatrix)EEE是一个3阶方阵,满足E=t∧RE=t^{\land}RE=t∧R其中RRR为旋转矩阵,ttt为平移量,t∧t^{\land}t∧运算定义如下(参考了
- 线性代数同济教材每一部分的现实意义
ZhuBin365
其它算法
一、行列式(Determinants)的现实意义:不仅仅是数字,而是“尺度”和“特性”行列式虽然计算结果是一个数值,但它绝不是一个孤立的数字,它在现实世界中代表着“尺度”和“特性”的重要信息:现实意义核心:“衡量变化的能力”和“判定系统特性”“尺度”:衡量体积/面积的缩放比例:在现实世界中,很多变换都会改变物体的形状和大小。行列式就像一个“尺度”,衡量了线性变换对面积(二维)或体积(三维及以上)的
- Python 用 NumPy 进行矩阵分解
Python用NumPy进行矩阵分解关键词:NumPy,矩阵分解,线性代数,奇异值分解,QR分解,LU分解,特征值分解摘要:本文将深入探讨使用NumPy进行矩阵分解的各种技术。我们将从基础的线性代数概念出发,详细讲解五种核心矩阵分解方法:LU分解、QR分解、奇异值分解(SVD)、特征值分解和Cholesky分解。每种方法都将配有数学原理说明、NumPy实现代码和实际应用案例。文章还将介绍矩阵分解在
- GNN--知识图谱(逐步贯通基础到项目实践)
峙峙峙
图神经网络知识图谱人工智能
原文仓库链接:知识图谱–贯通已有知识地图记录知识关系图谱和跨学科碰撞新启发知识图谱mermaid可能需要下载插件才能渲染线性代数神经网络深度学习框架硬件加速图论GNN框架交叉理解前向理解定义:前向理解:A–>B,A为B的基础铺垫知识,通过深入学习A对B有更好的理解01.LinearAlgebraforLinearLayerofNN从线性代数行列变换的角度看神经网络中的线性层线性代数矩阵乘法,可以理
- 机器学习的数学基础-线性代数
本文用于复习并记录机器学习中的相关数学基础,仅供学习参考。很多总结和例子来源于mml项目(mml-book.github.io)十分感谢这本书的作者,PS:这本书目前没有中文版。线性代数线性方程组矩阵矩阵的加法与乘法矩阵加法矩阵乘法单位矩阵与标量相乘逆与转置逆转置解决线性方程组特解与通解高斯消元法初级变换应用:“-1”trick应用:求逆总结-如何解决线性方程组?向量空间群向量空间向量子空间线性独
- reveiw of test --welcome www.1maitao.com
从0到1的技术进阶
数据结构算法出版网络生活
--welcomewww.1maitao.comA数学的复习:1.最好能在7月前开始,如果你基础不是很好,又想在数学多拿分的话。2.课本很重要,08和09的题已经充分说明了基础的重要性,最好在5——6月把两册高数书及例题过两遍,有个宏观的把握,拿到题,就知道是在考什么。3.参考书的选择:个人觉得李永乐那本复习全书更注重基础,更贴近这2年的考研风格。全书中线性代数那100多页讲得超好。4.复习进度:
- 线性代数在图像处理中的应用 --- 纳尼? 2D的高斯核可以通过1D的高斯核直接生成?(秩为1的矩阵)
松下J27
LinearAlgebra线性代数图像处理人工智能
二维高斯核,Rank秩等于一的矩阵之前,我在学习图像处理的时候,会经常用到Gaussianblur,也就是二维高斯低通滤波。当时用的都是Matlab中,现成的图像处理库。只需要输入sigma和kernelsize这些参数就行了,完全不需要考虑高斯核中的每个点长啥样。虽然教科书里面也会有一些配图,例如:直到后来,我学习高斯图像金字塔的时候发现,在别人的代码里面,他在生成二维高斯核的时候,并不是直接写
- 线性代数向量内积_向量的点积| 使用Python的线性代数
cumubi7453
python线性代数机器学习numpy算法
线性代数向量内积Prerequisite:LinearAlgebra|DefiningaVector先决条件:线性代数|定义向量Linearalgebraisthebranchofmathematicsconcerninglinearequationsbyusingvectorspacesandthroughmatrices.Inotherwords,avectorisamatrixinn-dim
- OpenGL: OpenGL+Qt实现介绍 (一)
程序员小马兰
OpenGL+Qt计算机视觉图形渲染前端
一、通过这个教程我们能学到什么?1、计算机图形学的基础知识。2、使用OpenGL在QT中进行编程。3、使用OpenGL做出一些很酷的效果。二、需要哪些预备知识?1、熟悉C++编程语言、Qt基本操作。2、数学基础知识(线性代数、几何、三角学)。三、为什么要学习OpenGL?各种三维图形引擎,原理都类似,几乎没什么差别,学好了OpenGL对Unity3D、虚幻引擎、OSG、webGL等的使用都会有巨大
- python数据分析scipy库安装与使用
范哥来了
python数据分析scipy
安装scipy库scipy是一个用于科学计算的Python库,它依赖于numpy。如果你还没有安装scipy,可以使用以下命令来安装:pipinstallscipy或者,如果你使用的是Anaconda环境,可以通过conda来安装:condainstallscipy使用scipy库scipy提供了许多用于科学计算的功能,包括统计、优化、积分、线性代数等。下面是一些常见的用法示例。1.导入scipy
- SciPy 安装使用教程
小奇JAVA面试
安装使用教程scipy
一、SciPy简介SciPy(ScientificPython)是基于NumPy的开源科学计算库,提供了数值积分、优化、信号处理、线性代数、统计分析等高级科学计算功能。它是构建Python科学计算生态系统的核心组件之一,常用于科研、工程、数据分析等领域。二、安装SciPy2.1使用pip安装(推荐)pipinstallscipy2.2使用Anaconda安装(科学计算推荐)condainstall
- 线性相关和线性无关
我推是大富翁
线性代数线性代数
在线性代数中,线性相关和线性无关是刻画向量组性质的核心概念,以下是关于它们的重要结论总结:一、基本定义与核心判定线性相关的定义向量组{α1,α2,…,αm}\{\alpha_1,\alpha_2,\dots,\alpha_m\}{α1,α2,…,αm}线性相关,当且仅当存在不全为零的实数k1,k2,…,kmk_1,k_2,\dots,k_mk1,k2,…,km线性无关的定义向量组{α1,α2,…,
- 线性代数-第9篇:二次型与正定矩阵:优化问题的数学基础
程序员勇哥
人工智能(AI)线性代数人工智能大数据python
线性代数-第9篇:二次型与正定矩阵:优化问题的数学基础在人工智能、量化投资和大数据分析中,优化问题无处不在,比如机器学习的损失函数最小化、量化投资组合的风险最小化等。而二次型与正定矩阵作为线性代数中的重要概念,为解决这些优化问题提供了坚实的数学基础。本篇将深入解析它们的原理及其在实际场景中的关键应用。一、二次型:从向量到函数的桥梁1.定义与表达式二次型是一个关于向量x\mathbf{x}x的二次齐
- 阅读笔记(2) 单层网络:回归
a2507283885
笔记
阅读笔记(2)单层网络:回归该笔记是DataWhale组队学习计划(共度AI新圣经:深度学习基础与概念)的Task02以下内容为个人理解,可能存在不准确或疏漏之处,请以教材为主。1.从泛函视角来看线性回归还记得线性代数里学过的“基”这个概念吗?一组基向量是一组线性无关的向量,它们通过线性组合可以张成一个向量空间。也就是说,这个空间里的任意一个向量,都可以表示成这组基的线性组合。函数其实也可以看作是
- C# vs Python:谁更适合初学者?用5个关键点教你掌握深度学习中的线性代数
墨瑾轩
一起学学C#【四】c#python深度学习
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣嘿,小伙伴们!今天我们要一起探索如何使用C#来入门深度学习的世界,特别关注其中的线性代数部分。你可能会好奇:“为什么是C#而不是Python?”别急,我们会在接下来的内容中详细解释这个问题,并通过对比两种语言的特点,让你明白选择C#进行深度学习并不是一个坏主意
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- 数学:线性相关和线性无关的关系
千码君2016
数学线性代数系数唯一性定义法矩阵秩法行列式法高维空间的基线性方程组
在线性代数中,线性无关是描述向量组性质的重要概念,它反映了向量组中向量之间是否存在“冗余”或“依赖”关系。以下从定义、判断方法、几何意义及应用等方面详细说明:一、线性无关的定义才成立,则称该向量组线性无关。反之,若存在不全为0的系数使等式成立,则称向量组线性相关。二、核心理解:线性无关的本质三、线性无关的判断方法1.定义法(直接验证)2.矩阵秩法
- 4、理解线性代数的核心概念与应用
rice5
线性代数第五版深度解析线性代数向量空间子空间
理解线性代数的核心概念与应用1引言线性代数是现代数学的重要分支之一,广泛应用于科学、工程、计算机科学等领域。理解线性代数的基本概念和原理不仅有助于学术研究,还能够提升解决实际问题的能力。本文将深入探讨线性代数中的核心概念,帮助读者建立坚实的理论基础,并掌握实际应用技巧。2向量空间向量空间是线性代数的基础概念之一。一个向量空间(V)是指一个集合,其元素称为向量,并且这些向量之间可以进行加法运算和标量
- (线性代数最小二乘问题)Normal Equation(正规方程)
音程
数学线性代数机器学习人工智能
NormalEquation(正规方程)是线性代数中的一个重要概念,主要用于解决最小二乘问题(LeastSquaresProblem)。它通过直接求解一个线性方程组,找到线性回归模型的最优参数(如权重或系数)。以下是详细介绍:1.定义与数学表达式给定一个超定方程组(方程数量多于未知数):Ax=bA\mathbf{x}=\mathbf{b}Ax=b其中:A∈Rm×nA\in\mathbb{R}^{m
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- 矩阵阶数(线性代数) vs. 张量维度(深度学习):线性代数与深度学习的基石辨析,再也不会被矩阵阶数给混淆了
Ven%
简单入门pytorch线性代数矩阵深度学习pytorchtensor张量人工智能
文章目录前言第一部分:重温矩阵阶数-方阵的专属标签第二部分:深入张量维度-深度学习的多维容器第三部分:核心区别总结第四部分:在深度学习中为何混淆?如何区分?结论前言在线性代数的殿堂里,“矩阵阶数”是一个基础而明确的概念。然而,当我们踏入深度学习的领域,面对的是更高维的数据结构——张量(Tensor),描述其大小的术语变成了“维度(Dimensions)”或更精确地说“形状(Shape)”。这两个概
- AI大模型学习路线(2025最新)神仙级大模型教程分享,非常详细收藏这一篇就够!
AI大模型-大飞
人工智能学习语言模型大模型大模型学习LLMAI大模型
大模型学习路线图前排提示,文末有大模型AGI-CSDN独家资料包哦!第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRos
- GNU Octave 基础教程(8):GNU Octave 常用数学函数
方博士AI机器人
GNUOctave基础教程机器学习算法人工智能
目录一、基本算术运二、初等数学函数三、三角函数与反三角函数四、统计函数五、复数与其他函数✅小结下一讲预告GNUOctave内置了大量数学函数,涵盖初等数学、线性代数、复数运算、统计函数等,非常适合科研、工程计算使用。本节将系统地梳理Octave中最常用的数学函数,并附上示例代码与输出结果。一、基本算术运运算符号/函数示例加法+a+b减法-a-b乘法*/.*A*B(矩阵乘法),A.*B(逐元素)除法
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源