- 利用LangChain的StackExchange组件实现智能问答系统
nseejrukjhad
langchainmicrosoft数据库python
利用LangChain的StackExchange组件实现智能问答系统引言在当今的软件开发世界中,StackOverflow已经成为程序员解决问题的首选平台之一。而LangChain作为一个强大的AI应用开发框架,提供了StackExchange组件,使我们能够轻松地将StackOverflow的海量知识库集成到我们的应用中。本文将详细介绍如何使用LangChain的StackExchange组件
- 基于 LangChain 开发应用程序第三章-储存
明志刘明
大模型学习手册langchain
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统本部分之前的章节可以查看基于LangChain开发应用程序第一章-简介基于LangChain开发应用程序第二章-提示和输出第三章储存在与语言模型交互时,你可能已经注意到一个关键问题:它们并不记忆你之前的交流内容,这在我们构建一些应用程序(如聊天机器人)的时候,带来了很大的挑战,使得对
- 《自然语言处理 Transformer 模型详解》
黑色叉腰丶大魔王
自然语言处理transformer人工智能
一、引言在自然语言处理领域,Transformer模型的出现是一个重大的突破。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)架构,完全基于注意力机制,在机器翻译、文本生成、问答系统等众多任务中取得了卓越的性能。本文将深入讲解Transformer模型的原理、结构和应用。二、Transformer模型的背景在Transformer出现之前,RNN及其变体(如LSTM和GRU)是自然语言
- 从零搭建一个可离线使用的可实时更新扩展信息的智能问答系统 llamaindex&LLama3大模型&RAG
千年奇葩
AI人工智能aillama人工智能llamafactory大模型
之前对一件事很好奇,为什么去年训练的大模型可以回答今天的新闻内容。答案是使用了知识扩展系统。基本原理是把参考答案和问题一同提给大模型,给他充分的参考信息做回复编辑。本文教你完成离线版本的智能问答系统搭建。有问题请直接留言最近在疯狂找下家,本人精通图形渲染和ai,求捞啊!基本架构图讲一下基本运行流程:人工准备数据转为嵌入向量存入数据库并生成索引用户提问流程:用户输入问题在索引数据库中查询匹配度较高的
- Ollama教程——深入解析:使用LangChain和Ollama构建JavaScript问答系统
walkskyer
ollama入门教程langchainjavascript开发语言ollamaAI
ollama入门系列教程简介与目录相关文章:Ollama教程——入门:开启本地大型语言模型开发之旅Ollama教程——模型:如何将模型高效导入到Ollama框架Ollama教程——兼容OpenAIAPI:高效利用兼容OpenAI的API进行AI项目开发Ollama教程——使用LangChain:Ollama与LangChain的强强联合Ollama教程——生成内容API:利用Ollama的原生AP
- 心理健康问答系统-AIGC大模型-小程序制作
阿利同学
小程序制作AIGC小程序问答系统心理健康人工智能小程序制作大模型
制作一个心理健康问答系统的小程序,涉及到多个环节和技术领域。这里将从需求分析、技术选型、开发流程、API调用等方面进行详细说明。一、需求分析与规划在开始任何项目之前,首先需要明确的是你的小程序想要解决什么样的问题,提供哪些功能给用户。对于心理健康问答系统来说,可能的功能包括但不限于:心理健康知识科普用户情绪识别及反馈提供专业心理咨询服务情绪日记记录心理健康测试问卷在线预约心理医生开发技术Sprin
- Cerebras DocChat发布:基于Llama 3构建,DocChat在几小时内完成GPT-4级别的对话问答训练
科技大本营
llama人工智能算法深度学习机器学习
Cerebras发布的DocChat标志着基于文档的对话式问答系统的一个重大里程碑。Cerebras以其在机器学习(ML)和大型语言模型(LLMs)方面的深厚专业知识而闻名,推出了DocChat系列的两个新模型:CerebrasLlama3-DocChat和CerebrasDragon-DocChat。这些模型旨在提供高性能的对话式人工智能,特别是针对基于文档的问答任务,并利用Cerebras的尖
- 保护隐私,释放智能:使用LangChain和Presidio构建安全的AI问答系统
2401_85763803
langchain安全人工智能
保护隐私,释放智能:使用LangChain和Presidio构建安全的AI问答系统在人工智能(AI)飞速发展的今天,AI问答系统已经成为企业与客户互动的重要工具。然而,随之而来的个人数据隐私问题也日益凸显。如何在不泄露用户隐私的前提下,利用AI的强大能力提供智能服务?本文将详细介绍如何使用LangChain和Presidio库构建一个既安全又高效的AI问答系统。一、隐私保护的重要性个人可识别信息(
- 人工智能领域--RAG技术
胡萝卜不甜
机器学习人工智能python学习算法
今天带大家来学习一下RAG技术,尤其在在大模型中应用广泛。一.RAG(RetrievalAugmentedGeneration)检索增强生成RAG,即Retrieval-AugmentedGeneration(检索增强的生成),是一种结合了检索(Retrieval)和生成(Generation)机制的人工智能技术,常用于提升自然语言处理(NLP)任务的性能,尤其是在问答系统、文本摘要、对话系统等领
- 【Python机器学习】NLP概述——聊天机器人的自然语言流水线
zhangbin_237
Python机器学习自然语言处理机器人人工智能python机器学习
构建对话引擎或者聊天机器人所需的NLP流水线类似于某些问答系统。聊天机器人需要4个处理阶段和一个数据库来维护过去语句和回复的记录。这4个处理阶段中的每个阶段都可以包含一个或多个并行或串行工作的处理算法。如下图所示:1、解析:从自然语言文本中提取特征、结构化数值数;2、分析:通过对文本的情感、语法合法度及语义打分,生成和组合特征;3、生成:使用模板、搜索或语言模型生成可能的回复;4、执行:根据对话历
- #LLM入门|Prompt#3.1 第三部分 使用 LangChain 开发应用程序_简介
向日葵花籽儿
LLM入门教程笔记AIGCpromptpythonLLMlangchain人工智能chatgpt
概述如何能够基于ChatGPT搭建一个完整、全面的问答系统,要搭建基于ChatGPT的完整问答系统,除去上一部分所讲述的如何构建PromptEngineering外,还需要完成多个额外的步骤。例如,处理用户输入提升系统处理能力,使用思维链、提示链来提升问答效果,检查输入保证系统反馈稳定,对系统效果进行评估以实现进一步优化等。当ChatGPTAPI提供了足够的智能性,系统的重要性就更充分地展现在保证
- 计算机毕设分享 面向高考招生咨询的问答系统设计与实现(源码+论文)
源码爱鸭
高考毕设毕业设计开源
文章目录0项目说明1项目说明2系统设计3系统功能3.1问答3.2问题模板4实验结果5论文目录6项目工程0项目说明面向高考招生咨询的问答系统设计与实现提示:适合用于课程设计或毕业设计,工作量达标,源码开放1项目说明本系统主要从数据获取,问题分类,问题处理和答案生成以及软件设计四个方面论述自动问答系统的设计与实现。数据获取涉及到网络数据抓取技术,数据库存储与操作,本文使用了python网络爬虫和MyS
- AI问答系统的一般问题
UPUPUPEveryday
人工智能机器学习深度学习
AI对话结果的可信程度AI对话结果的可信程度取决于多个因素。首先,可信度受到AI系统的训练和能力的影响。一个经过充分训练、经过验证的AI系统可能会产生更准确和可靠的对话结果。其次,可信度还取决于对话内容的复杂程度。AI系统在处理简单和直接的问题上可能比处理复杂和抽象的问题更具可信度。此外,可信度还受到语言模型和数据集的质量的影响。如果语言模型具有广泛且准确的数据集作为基础,那么结果的可信度可能会更
- 合槽位填充技术的问答系统构建步骤及其所需的技术和工具
Komorebi_9999
知识图谱问答系统自然语言处理
下面是结合槽位填充技术的问答系统构建步骤及其所需的技术和工具:1.知识图谱构建技术/工具:Neo4j或ArangoDB(图数据库)RDF2Neo(将RDF数据导入Neo4j的工具)D2RQ(将关系型数据库转化为SPARQL端点)模型算法:资源描述框架(RDF)Web本体语言(OWL)2.自然语言处理(NLP)技术/工具:spaCy(用于文本处理、词性标注、命名实体识别等)NLTK或HuggingF
- 【无标题】
Komorebi_9999
知识图谱问答系统自然语言处理
要构建一个基于知识图谱的问答系统,你需要进行以下工作:知识图谱构建:数据采集:从各种来源(如公开数据库、API、网页等)收集与你的领域相关的数据。数据清洗和预处理:清洗数据,去除重复、错误或不相关的信息,对数据进行归一化、标准化处理。实体识别和关系抽取:从数据中识别出实体(如人、地点、概念等)和它们之间的关系。构建图谱:将实体和关系组织成图谱结构,通常使用图数据库来存储。自然语言处理(NLP):分
- 基于neo4j的汽车领域知识图谱问答系统
程序员~小强
neo4j汽车知识图谱
介绍:请使用前务必读一下README.md,系统主要是汽车领域相关知识图谱问答系统,包括了汽车的价格、品牌等十几个关系实体,十几个关系,数据量实体7000+,关系9000+整个系统使用django构建,自带了一份数据,比较完整,有初始化数据接口,每次务必初始化数据后使用,neo4j按照README.md初始化,注意初始化可能需要一个多小时。底层数据库知识图谱采用neo4j,关系型数据库采用sqli
- 构建智能电影知识图谱问答系统
程序员~小强
知识图谱人工智能
在当今信息爆炸的时代,数据的组织与检索变得日益重要。知识图谱作为组织和管理复杂数据关系的强大工具,为实现智能问答系统提供了坚实的基础。本文将详细解析如何利用Python、Django框架以及Neo4j数据库,从零开始构建一个电影知识图谱问答与展示系统。###首先,系统概览本系统的核心是一个电影领域的知识图谱问答和展示平台,其背后依托的是强大的Neo4j图数据库。整个平台是基于Python的Djan
- 构建智能电影知识图谱问答系统
程序员~小强
知识图谱人工智能
在当今信息爆炸的时代,数据的组织与检索变得日益重要。知识图谱作为组织和管理复杂数据关系的强大工具,为实现智能问答系统提供了坚实的基础。本文将详细解析如何利用Python、Django框架以及Neo4j数据库,从零开始构建一个电影知识图谱问答与展示系统。首先,系统概览本系统的核心是一个电影领域的知识图谱问答和展示平台,其背后依托的是强大的Neo4j图数据库。整个平台是基于Python的Django框
- NLP学习-05.问答系统基础-文本表示(word representation)-距离计算
logi
上几节已经介绍了文本的分词,拼写纠错,这节介绍wordrepresentation和距离的计算都比较简单,不做详细说明.什么是wordrepresentation即将一个文本进行向量化,这样可以容易地进行距离的度量.有哪些方法进行文本向量化onehot:每个词都用onehot变化表示成稀疏向量;booleanrepresentation:即词典的长度为向量长度,有词的记为1;booleanrepr
- 深度学习在知识图谱问答中的革新与挑战
cooldream2009
AI技术NLP知识知识图谱深度学习知识图谱人工智能
目录前言1背景知识2基于深度学习改进问句解析模型2.1谓词匹配2.2问句解析2.3逐步生成查询图3基于深度学习的端到端模型3.1端到端框架3.2简单嵌入技术4优势4.1深入的问题表示4.2实体关系表示深挖4.3候选答案排序效果好5挑战5.1依赖大量训练语料5.2推理类问句效果有限5.3可解释性差结语前言随着深度学习技术的迅猛发展,其在知识图谱问答领域的应用正成为推动智能问答系统发展的关键因素。本文
- 基于预训练语言模型的检索- 匹配式知识图谱问答系统
Necther
自然语言处理知识图谱语言模型人工智能
基于预训练语言模型的检索-匹配式知识图谱问答系统张鸿志,李如寐,王思睿,黄江华美团,北京市朝阳区100020{zhanghongzhi03,lirumei,wangsirui,huangjianghua}@http://meituan.comAbstract.本文介绍了我们在CCKS-2020的KBQA任务上的技术方案。该系统包括指称识别、实体链接、候选答案生成以及答案排序四个子模块。在指称识别中
- 完蛋!我把AI喂吐了!
有道AI情报局
有道QAnything人工智能机器学习算法
当我们用RAG构建一个知识库问答应用的时候,总是希望知识库里面灌的数据越多,问答的效果越好,事实真是如此吗?这篇文章给大家答案。引言在人工智能问答系统的发展中,RAG(Retrieval-AugmentedGeneration)技术以其独特的检索增强生成方式,为减少大模型幻觉开辟了新的天地。然而,在实际落地过程中有一个很大的疑问:RAG系统,数据越多效果越好吗?本文将深入分析数据量如何影响RAG系
- QAnything之BCEmbedding技术路线
有道AI情报局
有道QAnything人工智能算法开源
QAnything和BCEmbedding简介QAnything[github]是网易有道开源的检索增强生成式应用(RAG)项目,在有道许多商业产品实践中已经积累丰富的经验,比如有道速读和有道翻译。QAnything是一个支持任意格式文件或数据库的本地知识库问答系统,可获得准确、快速、靠谱的问答体验。QAnything支持断网离线使用,可私有化。BCEmbedding是网易有道研发的两阶段检索算法
- 【大厂AI课学习笔记】【1.5 AI技术领域】(10)对话系统
giszz
学习笔记人工智能学习笔记
对话系统,DialogueSystem,也称为会话代理。是一种模拟人类与人交谈的计算机系统,旨在可以与人类形成连贯通顺的对话,通信方式主要有语音/文本/图片,当然也可以手势/触觉等其他方式一般我们将对话系统,分为两类:任务导向性的对话系统。例如问答系统;非任务导向型的对话系统。例如聊天机器人;比如在聊天机器人,语音助手,智能客服方面,都有很大的应用。比较重要的是,基于人工智能的对话系统,可以模拟人
- Bert与ChatGPT
ALGORITHM LOL
bertchatgpt人工智能
1.Bert模型BERT(BidirectionalEncoderRepresentationsfromTransformers)是一种预训练语言表示的方法,由GoogleAI在2018年提出。它标志着自然语言处理(NLP)领域的一个重大进步,因为它能够理解单词在不同上下文中的含义,从而显著提高了机器翻译、问答系统、文本摘要等任务的性能。核心概念双向Transformer:BERT的核心是Tran
- 使用阿里云通义千问14B(Qianwen-14B)模型自建问答系统
wangqiaowq
人工智能
使用阿里云通义千问14B(Qianwen-14B)模型自建问答系统时,调度服务器资源的详情将取决于以下关键因素:模型部署:GPU资源:由于Qianwen-14B是一个大规模语言模型,推理时需要高性能的GPU支持。模型参数量大,推理过程中对显存(GPU内存)的要求高,可能需要多块高端GPU,并且考虑是否支持模型并行或数据并行以充分利用硬件资源。单卡显存需求:根据之前的信息,Qianwen-14B微调
- 第14课:动手制作自己的简易聊天机器人
一纸繁鸢w
自动问答简介自动聊天机器人,也称为自动问答系统,由于所使用的场景不同,叫法也不一样。自动问答(QuestionAnswering,QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的
- 自然语言处理(NLP)——使用Rasa创建聊天机器人
思诺学长
NLP自然语言处理机器人nlp自然语言处理
1基本概念1.1自然语言处理的分类IR-BOT:检索型问答系统Task-bot:任务型对话系统Chitchat-bot:闲聊系统1.2任务型对话Task-Bot:task-orientedbot这张图展示了一个语音对话系统(或聊天机器人)的基本组成部分和它们之间的工作流程。这个系统可以接受语音信号作为输入,输出文本响应,并且它包括以下几个主要部分:1.2.1自动语音识别(ASR)这个部分的任务是将
- 自然语言NLP
Flying_Fish_roe
自然语言处理人工智能
什么是NLPNLP(NaturalLanguageProcessing)是自然语言处理的缩写,是计算机科学和人工智能领域的一个研究方向。NLP致力于使计算机能够理解、处理和生成人类自然语言的能力。通过NLP技术,计算机可以通过识别和理解语言中的文本、语音和情感等信息来与人类进行交互。NLP的应用包括机器翻译、信息提取、问答系统、情感分析、语音识别和自动摘要等。NLP的目标是使计算机具备与人类相近的
- 解析基于检索排序的知识图谱问答系统
cooldream2009
AI技术NLP知识知识图谱知识图谱人工智能问答技术检索排序
目录前言1问句的表示与语义理解1.1问句表示的重要性1.2端到端网络的优势2知识图谱中的排序问题2.1知识图谱的核心作用2.2查询匹配的转化与排序问题2.3实体链接的关键性2.4路径的构建与系统优化3难点与挑战3.1实体链接、命名实体识别和消歧3.2排序模型的挑战4优势4.1框架的灵活性4.2容易整合的端到端网络优化4.3综合运用排序模型5劣势5.1依赖特征工程5.2语义组合和推理问题的挑战结语前
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。