- 【deepseek】论文笔记--DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
大表哥汽车人
人工智能大语言模型学习笔记论文阅读人工智能deepseek
DeepSeek-R1论文解析1.论文基本信息标题:DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearning作者:DeepSeek-AI团队(联系邮箱:
[email protected])发表时间与出处:2024年,AIME2024(人工智能与数学教育国际会议)关键词:ReinforcementLe
- 论文笔记《基于深度学习模型的药物-靶标结合亲和力预测》
I_dyllic
深度学习论文阅读深度学习人工智能
基于深度学习模型的药物-靶标结合亲和力预测这是一篇二区的文章,算是一个综述,记录一下在阅读过程中遇到的问题。文章目录基于深度学习模型的药物-靶标结合亲和力预测前言一、蛋白质接触图谱二、为什么蛋白质图谱的准确性对DTA模型预测结果没有影响1.对这段话的解释2.关于Alphafold3三、随机配体与随机配体节点属性(配体一般指药物)1.什么是随机配体与配体节点属性四、关于深度学习模型对特征的自动学习过
- TC-LLaVA论文笔记
0yumiwawa0
计算机视觉论文阅读
RoPE介绍理解LLM位置编码:RoPE|LinsightMotivation在基于视频的multimodallargelanguagemodel中,更好地利用视频提供的时序信息。MethodTemporal-AwareDualRoPE之前的RoPE公式:A(qTm,kFnVz)=Re[qTmkFnVzei(P(Tm)−P(FnVz))θ]A_{(q_{T_m},k_{F_nV_z})}=Re[q
- CNN-day5-经典神经网络LeNets5
谢眠
深度学习深度学习计算机视觉人工智能
经典神经网络-LeNets51998年YannLeCun等提出的第一个用于手写数字识别问题并产生实际商业(邮政行业)价值的卷积神经网络参考:论文笔记:Gradient-BasedLearningAppliedtoDocumentRecognition-CSDN博客1网络模型结构整体结构解读:输入图像:32×32×1三个卷积层:C1:输入图片32×32,6个5×5卷积核,输出特征图大小28×28(3
- [论文笔记] llama3.2 蒸馏
心心喵
论文笔记论文阅读
参考链接:LLaMA3.2技术报告:GitHub-meta-llama/llama-stack:ModelcomponentsoftheLlamaStackAPIs[2407.21783]TheLlama3HerdofModelshttps://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/HuggingFac
- [论文笔记] Deepseek技术报告
心心喵
论文笔记论文阅读人工智能
1.总体概述背景与目标报告聚焦于利用强化学习(RL)提升大型语言模型(LLMs)的推理能力,旨在探索在不依赖大规模监督微调(SFT)的情况下,模型如何自我进化并形成强大的推理能力。介绍了两代模型:DeepSeek-R1-Zero(纯RL,无SFT冷启动数据)和DeepSeek-R1(在RL前加入少量冷启动数据和多阶段训练流程,提升可读性及推理表现)。核心思路直接在基础模型上应用大规模强化学习,利用
- 【论文笔记】基于图神经网络的多视角视觉重定位 GRNet CVPR 2020 论文笔记
phy12321
相机重定位
GRNet:LearningMulti-viewCameraRelocalizationwithGraphNeuralNetworks驭势科技,北京大学机器感知重点实验室,北京长城航空测控技术研究所本文提出了一种使用多视角图像进行相机重定位的图神经网络。该网络可以使得不连续帧之间进行信息传递,相比于只能在相邻前后帧之间进行信息传递的序列输入和LTSM,其能捕获更多视角信息以进行重定位。因此LSTM
- 论文笔记(七十)DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning(二)
墨绿色的摆渡人
文章论文阅读
DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearning(二)文章概括摘要:2.方法2.3.DeepSeek-R1:冷启动强化学习2.3.1.冷启动2.3.2.面向推理的强化学习2.3.3.拒绝采样与监督微调2.3.4.面向所有场景的强化学习2.4.蒸馏:赋予小模型推理能力文章概括引用:@article{g
- [论文总结] 深度学习在农业领域应用论文笔记14
落痕的寒假
论文总结深度学习论文阅读人工智能
当下,深度学习在农业领域的研究热度持续攀升,相关论文发表量呈现出迅猛增长的态势。但繁荣背后,质量却不尽人意。相当一部分论文内容空洞无物,缺乏能够落地转化的实际价值,“凑数”的痕迹十分明显。在农业信息化领域的顶刊《ComputersandElectronicsinAgriculture》中也大面积存在。众多论文在研究方法上存在严重缺陷,过于简单粗放。只是机械地把深度学习方法生硬地套用到特定农业问题中
- [论文笔记] llama-factory 微调qwen2.5、llama3踩坑
心心喵
论文笔记深度学习人工智能
一、bug1、pre-tokenize的时候,会OOM解决:在yaml文件中添加streaming参数#tokenizestreaming:Truemax_steps:10000https://github.com/hiyouga/LLaMA-Factory/blob/3a023bca2a502810a436cfba7708df164754ea62/src/llamafactory/hparams
- [论文笔记] Megatron: mistral sliding window(ImportError: /workspace/venv/lib/python3.10/site-packag报错解决)
心心喵
论文笔记论文阅读
pyTorch—TransformerEngine1.2.1documentation论文:https://arxiv.org/pdf/2310.06825.pdftransformerengine的slidingwindow是用了flashatttention(新版本2以上,这里用的最新版本2.5.2)里对sliding_window的实现。所以不需要用transformerengine。直接用
- [论文笔记]自监督sketch-to-image生成:Self-Supervised Sketch-to-Image Synthesis
沉迷单车的追风少年
深度学习-计算机视觉sketch深度学习计算机视觉
前言:2020年顶会同时出现了两篇很有意思的论文《Self-SupervisedSketch-to-ImageSynthesis》和《UnsupervisedSketch-to-PhotoSynthesis》,分别用自监督和无监督的方法做sketch-to-image生成,可以说是GANs在这一任务中表现的巅峰。目录主要贡献主要工作域转换模型TOMPS:边缘图、铅笔画图、草图sketch之间的区别
- 【论文笔记】:DuBox: No-Prior Box Objection Detection via Residual Dual Scale Detectors
Activewaste
#Anchor-free#特征层面#小目标检测DuBoxanchor-free
&Title:DuBox:No-PriorBoxObjectionDetectionviaResidualDualScaleDetectorsGithubaddrNone&Summary介绍了一种新的一阶段检测方法Dubox,它可以在没有先验框的情况下检测物体。设计的双尺度残差单元具有多尺度特性,使双尺度检测器不再独立运行。高层检测器学习低层检测器的残差。Dubox增强了启发式引导的能力,进一步使
- 【论文笔记】AutoML: A survey of the state-of-the-art(下篇)
pip install USART
学习笔记论文阅读记录论文阅读算法深度学习
目录4.ModelGeneration模型生成4.1SearchSpace搜索空间4.1.1Entire-structuredsearchspace基于整个架构的4.1.2Cell-basedsearchspace基于Cell的空间4.1.3Hierarchicalsearchspace层次化的空间4.1.3Morphism-basedsearchspace基于“态射”的空间4.2网络优化方法(搜
- 论文笔记 U-Net: Convolutional Networks for Biomedical Image Segmentation
城南皮卡丘
#深度学习caffe人工智能
摘要:人们普遍认为,深度网络的成功训练需要数千个带注释的训练样本。在本文中,我们提出了一种网络和训练策略,该策略依赖于大量使用数据增强来更有效地使用可用的注释样本。该体系结构包括用于捕获上下文的收缩路径和用于实现精确定位的对称扩展路径。我们表明,这样的网络可以从很少的图像进行端到端训练,并且在ISBI挑战中优于先前的最佳方法(滑动窗口卷积网络),用于分割电子显微堆栈中的神经元结构。使用在透射光显微
- AIGC视频生成模型:Meta的Emu Video模型
好评笔记
#MetaAIGC-视频AIGC机器学习人工智能transformer论文阅读深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Meta的视频生成模型EmuVideo,作为Meta发布的第二款视频生成模型,在视频生成领域发挥关键作用。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言相关工作文本到图像(T2I)扩散模型视频生成/预测文本到视频(T2V)生成分解生成方法预备知识EmuVideo生成步骤图
- AIGC视频生成国产之光:ByteDance的PixelDance模型
好评笔记
AIGC-视频补档AIGC计算机视觉人工智能深度学习机器学习论文阅读面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言输入训练和推理时的数据处理总结相关工作视频生成长视频生成方法模型架构
- 【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码)
YOLO大师
YOLO论文阅读
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例介绍摘要在嵌入式设备上部署卷积神经网络(CNNs)由于有限的内存和计算资源而变得困难。特征图中的冗余是那些成功的CNNs的一个重要特性,但在神经架构设计中很少被研究。本文提出了一种新颖的Ghost模块,
- 论文笔记—NDT-Transformer: Large-Scale 3D Point Cloud Localization using the Normal Distribution Transfor
入门打工人
笔记slam定位算法
论文笔记—NDT-Transformer:Large-Scale3DPointCloudLocalizationusingtheNormalDistributionTransformRepresentation文章摘要~~~~~~~在GPS挑战的环境中,自动驾驶对基于3D点云的地点识别有很高的要求,并且是基于激光雷达的SLAM系统的重要组成部分(即闭环检测)。本文提出了一种名为NDT-Transf
- [论文笔记]Circle Loss: A Unified Perspective of Pair Similarity Optimization
愤怒的可乐
#文本匹配[论文]论文翻译/笔记自然语言处理论文阅读人工智能
引言为了理解CoSENT的loss,今天来读一下CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization。为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。这篇论文从对深度特征学习的成对相似度优化角度出发,旨在最大化同类之间的相似度sps_ps
- 【论文笔记】Multi-Task Learning as a Bargaining Game
xhyu61
机器学习学习笔记论文笔记论文阅读人工智能深度学习
Abstract本文将多任务学习中的梯度组合步骤视为一种讨价还价式博弈(bargaininggame),通过游戏,各个任务协商出共识梯度更新方向。在一定条件下,这种问题具有唯一解(NashBargainingSolution),可以作为多任务学习中的一种原则方法。本文提出Nash-MTL,推导了其收敛性的理论保证。1Introduction大部分MTL优化算法遵循一个通用方案。计算所有任务的梯度g
- [论文笔记] LLaVA
心心喵
论文笔记论文阅读
一、LLaVA论文中的主要工作和实验结果ExistingGap:之前的大部分工作都在做模态对齐,做图片的representationlearning,而没有针对ChatBot(多轮对话,指令理解)这种场景优化。Contribution:这篇工作已经在BLIP-2之后了,所以Image的理解能力不是LLaVA希望提升的重点,LLaVA是想提升多模态模型的Instruction-Followingab
- [论文笔记] LLM模型剪枝
心心喵
论文笔记论文阅读剪枝算法
AttentionIsAllYouNeedButYouDon’tNeedAllOfItForInferenceofLargeLanguageModelsLLaMA2在剪枝时,跳过ffn和跳过fulllayer的效果差不多。相比跳过ffn/fulllayer,跳过attentionlayer的影响会更小。跳过attentionlayer:7B/13B从100%参数剪枝到66%,平均指标只下降1.7~
- 【论文笔记】Training language models to follow instructions with human feedback B部分
Ctrl+Alt+L
大模型论文整理论文笔记论文阅读语言模型人工智能自然语言处理
TraininglanguagemodelstofollowinstructionswithhumanfeedbackB部分回顾一下第一代GPT-1:设计思路是“海量无标记文本进行无监督预训练+少量有标签文本有监督微调”范式;模型架构是基于Transformer的叠加解码器(掩码自注意力机制、残差、Layernorm);下游各种具体任务的适应是通过在模型架构的输出后增加线性权重WyW_{y}Wy实
- 【论文笔记】:LAYN:用于小目标检测的轻量级多尺度注意力YOLOv8网络
hhhhhhkkkyyy
论文阅读目标检测YOLO
背景针对嵌入式设备对目标检测算法的需求,大多数主流目标检测框架目前缺乏针对小目标的具体改进,然后提出的一种轻量级多尺度注意力YOLOv8小目标检测算法。小目标检测精度低的原因随着网络在训练过程中的加深,检测到的目标容易丢失边缘信息和灰度信息等。获得高级语义信息也较少,图像中可能存在一些噪声信息,误导训练网络学习不正确的特征。映射到原始图像的感受野的大小。当感受野相对较小时,空间结构特征保留较多,但
- 激光SLAM--(8) LeGO-LOAM论文笔记
lonely-stone
slam激光SLAM论文阅读
论文标题:LeGO-LOAM:LightweightandGround-OptimizedLidarOdometryandMappingonVariableTerrain应用在可变地形场景的轻量级的、并利用地面优化的LOAMABSTRACT轻量级的、基于地面优化的LOAM实时进行六自由度位姿估计,应用在地面的车辆上。强调应用在地面车辆上是因为在这里面要求雷达必须水平安装,而像LOAM和LIO-SA
- 论文浅尝 - AAAI2020 | 迈向建立多语言义元知识库:用于 BabelNet Synsets 义元预测...
开放知识图谱
机器学习人工智能知识图谱自然语言处理深度学习
论文笔记整理:潘锐,天津大学硕士。来源:AAAI2020链接:https://arxiv.org/pdf/1912.01795.pdf摘要义原被定义为人类语言的最小语义单位。义原知识库(KBs)是一种包含义原标注词汇的知识库,它已成功地应用于许多自然语言处理任务中。然而,现有的义原知识库建立在少数几种语言上,阻碍了它们的广泛应用。为此论文提出在多语种百科全书词典BabelNet的基础上建立一个统一
- [论文笔记] LLM数据集——LongData-Corpus
心心喵
论文笔记服务器ubuntulinux
https://huggingface.co/datasets/yuyijiong/LongData-Corpus1、hf的数据在开发机上要设置sshkey,然后cat复制之后在设置在hf上2、中文小说数据在云盘上清华大学云盘下载:#!/bin/bash#BaseURLbase_url="https://cloud.tsinghua.edu.cn/d/0670fcb14d294c97b5cf/fi
- [论文笔记] eval-big-refactor lm_eval 每两个任务使用一个gpu,并保证端口未被使用
心心喵
论文笔记restful后端
1.5B在eval时候两个任务一个gpu是可以的。7B+在evalbelebele时会OOM,所以分配时脚本不同。eval_fast.py:importsubprocessimportargparseimportosimportsocket#参数列表task_name_list=["flores_mt_en_to_id","flores_mt_en_to_vi","flores_mt_en_to_
- 【论文笔记】Separating the “Chirp” from the “Chat”: Self-supervised Visual Grounding of Sound and Language
xhyu61
机器学习学习笔记论文笔记论文阅读
Abstract提出了DenseAV,一种新颖的双编码器接地架构,仅通过观看视频学习高分辨率、语义有意义和视听对齐的特征。在没有明确的本地化监督的情况下,DenseAV可以发现单词的"意义"和声音的"位置"。此外,它在没有监督的情况下自动发现并区分这两种类型的关联。DenseAV的定位能力源于一种新的多头特征聚合算子,该算子直接比较稠密的图像和音频表示进行对比学习。相比之下,许多其他学习"全局"音
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不