求两个矩阵中向量的欧氏距离(python实现)

假设有两个三维向量集,用矩阵表示:


求两个矩阵中向量的欧氏距离(python实现)_第1张图片

要求A,B两个集合中的元素两两间欧氏距离。

先求出ABT:

求两个矩阵中向量的欧氏距离(python实现)_第2张图片

然后对A和BT分别求其中每个向量的模平方,并扩展为2*3矩阵:

求两个矩阵中向量的欧氏距离(python实现)_第3张图片
求两个矩阵中向量的欧氏距离(python实现)_第4张图片

将上面这个矩阵一开平方,就得到了A,B向量集两两间的欧式距离了。

算法:
def EuclideanDistances(A, B):
    BT = B.transpose()
    # vecProd = A * BT
    vecProd = np.dot(A,BT)
    # print(vecProd)
    SqA =  A**2
    # print(SqA)
    sumSqA = np.matrix(np.sum(SqA, axis=1))
    sumSqAEx = np.tile(sumSqA.transpose(), (1, vecProd.shape[1]))
    # print(sumSqAEx)

    SqB = B**2
    sumSqB = np.sum(SqB, axis=1)
    sumSqBEx = np.tile(sumSqB, (vecProd.shape[0], 1))    
    SqED = sumSqBEx + sumSqAEx - 2*vecProd
    SqED[SqED<0]=0.0   
    ED = np.sqrt(SqED)
    return ED
scipy调用:
distance.cdist([[1,2,3],[4,5,6]],[[2,3,4],[5,6,7],[8,9,10]])

你可能感兴趣的:(python,机器学习)