直接使用训练好的VGG16测试

实验环境:

直接使用训练好的VGG16测试_第1张图片

1、下载用VGG16在ImageNet数据集上训练好的权重数据 vgg16.npy  链接:https://pan.baidu.com/s/1gg9jLw3  密码:umce

2、下载imagenet_classes.py (1000个类别,tf.argmax 返回值就是imagenet_classes中行号对应的类别),下载地址:http://www.cs.toronto.edu/~frossard/post/vgg16/

3、创建 vgg16_v1.py

4、将一张猫图片(或其他图片),vgg16_v1.py,imagenet_classes.py,vgg16.npy放在同一个文件夹在

5、运行,ok....

vgg16_v1.py如下:

import tensorflow as tf
import numpy as np
import cv2
import imagenet_classes 


class vgg16:
    def __init__(self, imgs, weights=None, sess=None):
        self.imgs = imgs
        self.convlayers()
        self.fc_layers()
        if weights is not None and sess is not None:
            self.load_weights(weights, sess)

    def convlayers(self):
        self.parameters = []
        # zero-mean input
        with tf.name_scope('preprocess') as scope:
            mean = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32, shape=[1, 1, 1, 3], name='img_mean')
            images = self.imgs-mean

        # conv1_1
        with tf.name_scope('conv1_1') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 3, 64], dtype=tf.float32,stddev=1e-1), name='weights')
            biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),trainable=True, name='biases')
            conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
            out = tf.nn.bias_add(conv, biases)
            self.conv1_1 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv1_2
        with tf.name_scope('conv1_2') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 64], dtype=tf.float32,stddev=1e-1), name='weights')
            biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),trainable=True, name='biases')                                         
            conv = tf.nn.conv2d(self.conv1_1, kernel, [1, 1, 1, 1], padding='SAME')
            out = tf.nn.bias_add(conv, biases)
            self.conv1_2 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # pool1
        self.pool1 = tf.nn.max_pool(self.conv1_2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],padding='SAME',name='pool1')
                              
        # conv2_1
        with tf.name_scope('conv2_1') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 128], dtype=tf.float32,stddev=1e-1), name='weights')
            biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32),trainable=True, name='biases')                                         
            conv = tf.nn.conv2d(self.pool1, kernel, [1, 1, 1, 1], padding='SAME')
            out = tf.nn.bias_add(conv, biases)
            self.conv2_1 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv2_2
        with tf.name_scope('conv2_2') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 128, 128], dtype=tf.float32, stddev=1e-1), name='weights')
            biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32),trainable=True, name='biases')                                        
            conv = tf.nn.conv2d(self.conv2_1, kernel, [1, 1, 1, 1], padding='SAME')
            out = tf.nn.bias_add(conv, biases)
            self.conv2_2 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]
        # pool2
        self.pool2 = tf.nn.max_pool(self.conv2_2,ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],padding='SAME', name='pool2')
                               
        # conv3_1
        with tf.name_scope('conv3_1') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 128, 256], dtype=tf.float32,stddev=1e-1), name='weights')
            biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),trainable=True, name='biases')                                         
            conv = tf.nn.conv2d(self.pool2, kernel, [1, 1, 1, 1], padding='SAME')
            out = tf.nn.bias_add(conv, biases)
            self.conv3_1 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv3_2
        with tf.name_scope('conv3_2') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32,stddev=1e-1), name='weights')
            biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32), trainable=True, name='biases')                                          
            conv = tf.nn.conv2d(self.conv3_1, kernel, [1, 1, 1, 1], padding='SAME')
            out = tf.nn.bias_add(conv, biases)
            self.conv3_2 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv3_3
        with tf.name_scope('conv3_3') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32,stddev=1e-1), name='weights')
            biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),trainable=True, name='biases')                                         
            conv = tf.nn.conv2d(self.conv3_2, kernel, [1, 1, 1, 1], padding='SAME')
            out = tf.nn.bias_add(conv, biases)
            self.conv3_3 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # pool3
        self.pool3 = tf.nn.max_pool(self.conv3_3,ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1],padding='SAME',name='pool3')
                               
        # conv4_1
        with tf.name_scope('conv4_1') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 512], dtype=tf.float32,stddev=1e-1), name='weights')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),trainable=True, name='biases')                                          
            conv = tf.nn.conv2d(self.pool3, kernel, [1, 1, 1, 1], padding='SAME')
            out = tf.nn.bias_add(conv, biases)
            self.conv4_1 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv4_2
        with tf.name_scope('conv4_2') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,stddev=1e-1), name='weights')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),trainable=True, name='biases')                                      
            conv = tf.nn.conv2d(self.conv4_1, kernel, [1, 1, 1, 1], padding='SAME')
            out = tf.nn.bias_add(conv, biases)
            self.conv4_2 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv4_3
        with tf.name_scope('conv4_3') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,stddev=1e-1), name='weights')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32), trainable=True, name='biases')                                         
            conv = tf.nn.conv2d(self.conv4_2, kernel, [1, 1, 1, 1], padding='SAME')
            out = tf.nn.bias_add(conv, biases)
            self.conv4_3 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # pool4
        self.pool4 = tf.nn.max_pool(self.conv4_3,ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],padding='SAME',name='pool4')
                               
        # conv5_1
        with tf.name_scope('conv5_1') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,stddev=1e-1), name='weights')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32), trainable=True, name='biases')                                         
            conv = tf.nn.conv2d(self.pool4, kernel, [1, 1, 1, 1], padding='SAME')
            out = tf.nn.bias_add(conv, biases)
            self.conv5_1 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv5_2
        with tf.name_scope('conv5_2') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv5_1, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv5_2 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv5_3
        with tf.name_scope('conv5_3') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32, stddev=1e-1), name='weights')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),trainable=True, name='biases')                                      
            conv = tf.nn.conv2d(self.conv5_2, kernel, [1, 1, 1, 1], padding='SAME')
            out = tf.nn.bias_add(conv, biases)
            self.conv5_3 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # pool5
        self.pool5 = tf.nn.max_pool(self.conv5_3,ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1],padding='SAME',name='pool4')
                               
    def fc_layers(self):
        # fc1
        with tf.name_scope('fc6') as scope:
            shape = int(np.prod(self.pool5.get_shape()[1:]))
            fc1w = tf.Variable(tf.truncated_normal([shape, 4096], dtype=tf.float32, stddev=1e-1), name='weights')
            fc1b = tf.Variable(tf.constant(1.0, shape=[4096], dtype=tf.float32),trainable=True, name='biases')
            pool5_flat = tf.reshape(self.pool5, [-1, shape])
            fc1l = tf.nn.bias_add(tf.matmul(pool5_flat, fc1w), fc1b)
            self.fc1 = tf.nn.relu(fc1l)
            self.parameters += [fc1w, fc1b]

        # fc2
        with tf.name_scope('fc7') as scope:
            fc2w = tf.Variable(tf.truncated_normal([4096, 4096],dtype=tf.float32,stddev=1e-1), name='weights')
            fc2b = tf.Variable(tf.constant(1.0, shape=[4096], dtype=tf.float32),trainable=True, name='biases')
            fc2l = tf.nn.bias_add(tf.matmul(self.fc1, fc2w), fc2b)
            self.fc2 = tf.nn.relu(fc2l)
            self.parameters += [fc2w, fc2b]

        # fc3
        with tf.name_scope('fc8') as scope:
            fc3w = tf.Variable(tf.truncated_normal([4096, 1000], dtype=tf.float32,stddev=1e-1), name='weights')
            fc3b = tf.Variable(tf.constant(1.0, shape=[1000], dtype=tf.float32),trainable=True, name='biases')
            self.fc3l = tf.nn.bias_add(tf.matmul(self.fc2, fc3w), fc3b)
            self.parameters += [fc3w, fc3b]

    def load_weights(self, weight_file, sess):
        data_dict = np.load(weight_file, encoding='latin1').item()
        keys = sorted(data_dict.keys())
#         print(len(keys),len(self.parameters))
        for i,key in enumerate(keys):
            weights = data_dict[key][0]
            biases = data_dict[key][1]
#             print(i,key,'w=',data_dict[key][0].shape,'b=',data_dict[key][1].shape)
            sess.run(self.parameters[2*i].assign(data_dict[key][0]))
            sess.run(self.parameters[2*i+1].assign(data_dict[key][1]))
           
    def predict(self):
        return tf.argmax(tf.nn.softmax(self.fc3l),1)        

if __name__ == '__main__':
    weigth='E:/deepLearningModel/vgg16.npy' #我把vgg16.npy放在E:/deepLearningModel/
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        imgs = tf.placeholder(tf.float32, [None, 224, 224, 3])
        vgg = vgg16(imgs, weigth, sess)
        preData = cv2.imread('cat.1.jpg')
        img1 =cv2.resize(preData,(224, 224))
        prob = sess.run(vgg.predict(), feed_dict={vgg.imgs: [img1]})
        print(imagenet_classes.class_names[prob[0]])
    
            
          
        
        

结果

直接使用训练好的VGG16测试_第2张图片

 

你可能感兴趣的:(深度学习)