使用python提取中文地址描述中的省市区信息

文章目录

  • 引言
  • 模块安装
  • Github地址
  • 基本功能
    • 分词模式
    • 全文模式
  • 地图绘制

引言


在一次建模比赛中,我手头里的原始数据中有一个“地址描述”地段,如下:

地址描述
广州国际采购中心1401
上海市长宁区金钟路658弄5号楼5楼
徐汇区虹漕路461号58号楼5楼
济南市历下区和平路34号轻骑院内东二层山东朵拉

这样的地址描述字段过于随意,很难使用,但是看这些字符串的样子似乎又可以提取出其所在的省、市和区,即使只能够提取出区或者市,如果我们有一个省、市和区的归属数据库的话,应该也能够将剩下的信息映射出来,如果自己写的话肯定很麻烦,还要去网上找数据库,于是我做了一个可以复用的python模块,一条命令就可以将上面的“地址描述”字段转换成如下的样子:

广东省 广州市
上海市 上海市 长宁区
上海市 上海市 徐汇区
山东省 济南市 历下区

模块安装


目前支持python3

Github地址


更详细的模块介绍见Github上的README
https://github.com/DQinYuan/chinese_province_city_area_mapper

如果觉得这个模块对你有帮助的话,请给个star啊

基本功能


分词模式

本模块中最主要的方法是cpca.transform,该方法可以输入任意的可迭代类型(如list,pandas的Series类型等),然后将其转换为一个DataFrame,下面演示一个最为简单的使用方法:

location_str = ["徐汇区虹漕路461号58号楼5楼", "泉州市洛江区万安塘西工业区", "朝阳区北苑华贸城"]
import cpca
df = cpca.transform(location_str)
df

输出的结果为:

如果你想获知程序是从字符串的哪个位置提取出省市区名的,可以添加一个pos_sensitive=True参数:

location_str = ["徐汇区虹漕路461号58号楼5楼", "泉州市洛江区万安塘西工业区", "朝阳区北苑华贸城"]
import cpca
df = cpca.transform(location_str, pos_sensitive=True)
df

输出如下:

其中省_pos市_pos区_pos三列大于-1的部分就代表提取的位置。-1则表明这个字段是靠程序推断出来的,抑或没能提取出来。

默认情况下transform方法的cut参数为True,即采用分词匹配的方式,这种方式速度比较快,但是准确率可能会比较低,如果追求准确率而不追求速度的话,建议将cut设为False(全文模式),具体见下一小节。

全文模式

jieba分词并不能百分之百保证分词的正确性,在分词错误的情况下会造成奇怪的结果,比如下面:

location_str = ["浙江省杭州市下城区青云街40号3楼"]
import cpca
df = cpca.transform(location_str)
df

输出的结果为:

这种诡异的结果是因为jieba本身就将词给分错了,所以我们引入了全文模式,不进行分词,直接全文匹配,使用方法如下:

location_str = ["浙江省杭州市下城区青云街40号3楼"]
import cpca
df = cpca.transform(location_str, cut=False)
df

结果如下:

这下就完全正确了,不过全文匹配模式会造成匹配效率低下,
我默认会向前看8个字符(对应transform中的lookahead参数默认值为8),
这个是比较保守的,因为有的地名会比较长(比如“新疆维吾尔族自治区”),如果你的地址库中都是些短小的省市区名的话,
可以选择将lookahead设置得小一点,比如:

location_str = ["浙江省杭州市下城区青云街40号3楼"]
import cpca
df = cpca.transform(location_str, cut=False, lookahead=3)
df

输出结果和上面是一样的。

再举一个例子,这个例子经测试只有使用全文匹配才能匹配出地名,:

import cpca
cpca.transform(["11月15日早上9点到11月18日下班前王大猫。在观山湖区"], cut=False, pos_sensitive=True)

输出为:

地图绘制


模块中还自带一些简单绘图工具,可以在地图上将上面输出的数据以热力图的形式画出来.

这个工具依赖folium,为了减小本模块的体积,所以并不会预装这个依赖,在使用之前请使用pip install folium .

代码如下:

from cpca import drawer
#df为上一段代码输出的df
drawer.draw_locations(df, "df.html")

这一段代码运行结束后会在运行代码的当前目录下生成一个df.html文件,用浏览器打开即可看到
绘制好的地图(如果某条数据’省’,'市’或’区’字段有缺,则会忽略该条数据不进行绘制),速度会比较慢,需要耐心等待,绘制的图像如下:

使用python提取中文地址描述中的省市区信息_第1张图片

还有更多的绘图工具请参考Github上的README中大标题为“示例与测试用例”的部分。

你可能感兴趣的:(教程)