分类VS分割——从原理和代码角度来分析对比(点云深度学习)

分类任务与分割任务有什么联系吗?

答案是肯定的。

 

分割其实就是对每一个像素进行分类。在代码上,分割与分类的区别就更小了,都是用全连接层输出一定的数目,这个数目就是你要分类/分割的个数。

以PointNet为例,先看看网络架构:

 

分类VS分割——从原理和代码角度来分析对比(点云深度学习)_第1张图片

 

可以看到网络在得到global feature之前,分类和分割是公用一套网络的。它们的代码自然也一样。这部分代码位于pointnet_cls.py和pointnet_seg.py中,完全相同。

def get_model(point_cloud, is_training, bn_decay=None):
    """ Classification PointNet, input is BxNx3, output Bx40 """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}    with tf.variable_scope('transform_net1') as sc:
        transform = input_transform_net(point_cloud, is_training, bn_decay, K=3)
    point_cloud_transformed = tf.matmul(point_cloud, transform)
    input_image = tf.expand_dims(point_cloud_transformed, -1)

    net = tf_util.conv2d(input_image, 64, [1,3],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv1', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 64, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv2', bn_decay=bn_decay)    with tf.variable_scope('transform_net2') as sc:
        transform = feature_transform_net(net, is_training, bn_decay, K=64)
    end_points['transform'] = transform
    net_transformed = tf.matmul(tf.squeeze(net, axis=[2]), transform)
    net_transformed = tf.expand_dims(net_transformed, [2])

    net = tf_util.conv2d(net_transformed, 64, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv3', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 128, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv4', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 1024, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv5', bn_decay=bn_decay)

再往后看,就出现一些区别了。

 

 

分类任务:

    # Symmetric function: max pooling
    net = tf_util.max_pool2d(net, [num_point,1],
                             padding='VALID', scope='maxpool')

    net = tf.reshape(net, [batch_size, -1])
    net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training,
                                  scope='fc1', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training,
                          scope='dp1')
    net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training,
                                  scope='fc2', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training,
                          scope='dp2')
    net = tf_util.fully_connected(net, 40, activation_fn=None, scope='fc3')    return net, end_points

代码布局如同网络中描绘的一样。池化操作后,做全连接层,最后输出40,对应40类物体分类。

 

 

再来看分割:

    global_feat = tf_util.max_pool2d(net, [num_point,1],
                                     padding='VALID', scope='maxpool')
    print(global_feat)

    global_feat_expand = tf.tile(global_feat, [1, num_point, 1, 1])
    concat_feat = tf.concat(3, [point_feat, global_feat_expand])
    print(concat_feat)

    net = tf_util.conv2d(concat_feat, 512, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv6', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 256, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv7', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 128, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv8', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 128, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv9', bn_decay=bn_decay)

    net = tf_util.conv2d(net, 50, [1,1],
                         padding='VALID', stride=[1,1], activation_fn=None,
                         scope='conv10')
    net = tf.squeeze(net, [2]) # BxNxC

    return net, end_points

除了增加全局特征与点特征的拼接外,也是做了全连接操作,注意此处的全连接使用1*1的卷积实现的,但是本质上和使用fully_connect效果一样。最后的输出是50,对应的是分割任务的50个parts。

 

 

最后的损失函数也是一样的。这里就不贴出来了。

 

所以,总的来说,分割就是一种特殊的分类。当然,为了提高分割效果,可以对损失函数做相应的改进,如平滑等

你可能感兴趣的:(point,cloud,deep,learning)