spark1.6源码-----任务提交与执行之任务提交

 我是从RDD的collect函数进去的。

  /**
   * Return an array that contains all of the elements in this RDD.
   */
  //调用了sparkContext的runJob
  //返回一个Array集合
  def collect(): Array[T] = withScope {
    val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
    Array.concat(results: _*)
  }
  /**
   * Run a job on all partitions in an RDD and return the results in an array.
   */
  def runJob[T, U: ClassTag](rdd: RDD[T], func: Iterator[T] => U): Array[U] = {
    //对RDD每一个分区运行一次runJob,意思就是分区计算
    runJob(rdd, func, 0 until rdd.partitions.length)
  }
  /**
   * Run a job on a given set of partitions of an RDD, but take a function of type
   * `Iterator[T] => U` instead of `(TaskContext, Iterator[T]) => U`.
   */
  //重载函数
  def runJob[T, U: ClassTag](
      rdd: RDD[T],
      func: Iterator[T] => U,
      partitions: Seq[Int]): Array[U] = {
    //防止反序列化失败
    val cleanedFunc = clean(func)
    runJob(rdd, (ctx: TaskContext, it: Iterator[T]) => cleanedFunc(it), partitions)
  }
  /**
   * Run a function on a given set of partitions in an RDD and return the results as an array.
   */
  def runJob[T, U: ClassTag](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int]): Array[U] = {
    //该数组用于获取每个分区的数据
    val results = new Array[U](partitions.size)
    //再次调用重载函数
    runJob[T, U](rdd, func, partitions, (index, res) => results(index) = res)
    results
  }
  /**
   * Run a function on a given set of partitions in an RDD and pass the results to the given
   * handler function. This is the main entry point for all actions in Spark.
   */
  def runJob[T, U: ClassTag](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      resultHandler: (Int, U) => Unit): Unit = {
    if (stopped.get()) {
      throw new IllegalStateException("SparkContext has been shutdown")
    }
    //调用栈---就是能跟踪到代码的运行位置
    val callSite = getCallSite
    //清除函数里面不能序列化的对象
    val cleanedFunc = clean(func)
    logInfo("Starting job: " + callSite.shortForm)
    if (conf.getBoolean("spark.logLineage", false)) {
      logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
    }
    //调用DAGScheduler的runJob
    dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
    progressBar.foreach(_.finishAll())
    
    rdd.doCheckpoint()
  }
 /**
   * Run an action job on the given RDD and pass all the results to the resultHandler function as
   * they arrive.
   *
   * @param rdd target RDD to run tasks on
   * @param func a function to run on each partition of the RDD
   * @param partitions set of partitions to run on; some jobs may not want to compute on all
   *   partitions of the target RDD, e.g. for operations like first()
   * @param callSite where in the user program this job was called
   * @param resultHandler callback to pass each result to
   * @param properties scheduler properties to attach to this job, e.g. fair scheduler pool name
   *
   * @throws Exception when the job fails
   */
  def runJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      resultHandler: (Int, U) => Unit,
      properties: Properties): Unit = {
    val start = System.nanoTime
    //调用了submitJob方法。
    val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties)
    //说明方法是异步的
    waiter.awaitResult() match {
      //任务运行成功后的处理
      case JobSucceeded =>
        logInfo("Job %d finished: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
      //任务运行失败后的处理
      case JobFailed(exception: Exception) =>
        logInfo("Job %d failed: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
        // SPARK-8644: Include user stack trace in exceptions coming from DAGScheduler.
        val callerStackTrace = Thread.currentThread().getStackTrace.tail
        exception.setStackTrace(exception.getStackTrace ++ callerStackTrace)
        throw exception
    }
  }  
  /**
   * Submit an action job to the scheduler.
   *
   * @param rdd target RDD to run tasks on
   * @param func a function to run on each partition of the RDD
   * @param partitions set of partitions to run on; some jobs may not want to compute on all
   *   partitions of the target RDD, e.g. for operations like first()
   * @param callSite where in the user program this job was called
   * @param resultHandler callback to pass each result to
   * @param properties scheduler properties to attach to this job, e.g. fair scheduler pool name
   *
   * @return a JobWaiter object that can be used to block until the job finishes executing
   *         or can be used to cancel the job.
   *
   * @throws IllegalArgumentException when partitions ids are illegal
   */
  def submitJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      resultHandler: (Int, U) => Unit,
      properties: Properties): JobWaiter[U] = {
    // Check to make sure we are not launching a task on a partition that does not exist.
    //检查一下,确保没有产生一个没有RDD分区的task
    val maxPartitions = rdd.partitions.length
    partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
      throw new IllegalArgumentException(
        "Attempting to access a non-existent partition: " + p + ". " +
          "Total number of partitions: " + maxPartitions)
    }
    //获取到JobId
    val jobId = nextJobId.getAndIncrement()
    if (partitions.size == 0) {
      // Return immediately if the job is running 0 tasks
      //如果task没有了  就立刻返回一个JobWaiter
      return new JobWaiter[U](this, jobId, 0, resultHandler)
    }
    
    assert(partitions.size > 0)
    
    val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
    //创建一个JobWaiter
    val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
    //通过DAGEventProcessLoop 去处理JobSubmitted
    eventProcessLoop.post(JobSubmitted(
      jobId, rdd, func2, partitions.toArray, callSite, waiter,
      SerializationUtils.clone(properties)))
    waiter
  }
  
  private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
    case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>
      //DAGEventProcessLoop 会去调用dagScheduler.handleJobSubmitted
      dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)
  }
  
  private[scheduler] def handleJobSubmitted(jobId: Int,
      finalRDD: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      callSite: CallSite,
      listener: JobListener,
      properties: Properties) {
    //创建了一个ResultStage空引用
    var finalStage: ResultStage = null
    try {
      // New stage creation may throw an exception if, for example, jobs are run on a
      // HadoopRDD whose underlying HDFS files have been deleted.
      //创建stage时可能会发生异常(比如job在运行时文件被删了),所以需要手动抛出异常
      //创建了一个ResultStage
      finalStage = newResultStage(finalRDD, func, partitions, jobId, callSite)
    } catch {
      case e: Exception =>
        logWarning("Creating new stage failed due to exception - job: " + jobId, e)
        listener.jobFailed(e)
        return
    }
    // 将所有信息包装创建ActiveJob
    val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
    clearCacheLocs()
    logInfo("Got job %s (%s) with %d output partitions".format(
      job.jobId, callSite.shortForm, partitions.length))
    logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
    logInfo("Parents of final stage: " + finalStage.parents)
    logInfo("Missing parents: " + getMissingParentStages(finalStage))

    val jobSubmissionTime = clock.getTimeMillis()
    //更新到HashMap---jobIdToActiveJob
    jobIdToActiveJob(jobId) = job
    //HasSet---activeJobs
    activeJobs += job
    //设置job
    finalStage.setActiveJob(job)
    //获取stageId的一个数组
    val stageIds = jobIdToStageIds(jobId).toArray
    val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
    //listenerBus 就是WEB的监听器  好大家从WEB页面观察到程序运行情况
    listenerBus.post(
      SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
    //提交ResultStage
    submitStage(finalStage)
    //提交那些等待中的stage
    submitWaitingStages()
  }
/**
 * ResultStages apply a function on some partitions of an RDD to compute the result of an action.
 * The ResultStage object captures the function to execute, `func`, which will be applied to each
 * partition, and the set of partition IDs, `partitions`. Some stages may not run on all partitions
 * of the RDD, for actions like first() and lookup().
 */
 //翻译  什么是ResuleStage:
 //对于每一个action操作resultstage在RDD的分区上都会应用同一个函数计算的结果,就是真正进行计算的stage。
 //ResultStage对象将这个函数应用在每一个RDD分区上,不过有的不用用在所有分区上,比如first()
 private[spark] class ResultStage(
    id: Int,
    rdd: RDD[_],
    val func: (TaskContext, Iterator[_]) => _,
    val partitions: Array[Int],
    parents: List[Stage],
    firstJobId: Int,
    callSite: CallSite)
  extends Stage(id, rdd, partitions.length, parents, firstJobId, callSite) {
  }
      
      
  
  

 

你可能感兴趣的:(spark)