- 【可持续学习网络模型0】目前全球增量学习或持续学习研究现状
帮带做
人工智能学习python硕博论文创新持续学习增量学习神经网络
全球增量学习或持续学习研究现状一、全球研究现状综述(2025年主流)✅1.研究目标和挑战✅2.主流研究范式(按解决灾难性遗忘的策略分类)二、重点代表性方法简介(含通俗解释)1.**EWC(ElasticWeightConsolidation)**:2.**iCaRL(IncrementalClassifierandRepresentationLearning)**:3.**HAT(HardAtte
- yolo模型精度提升策略
Summit-
YOLO人工智能机器学习
总结与行动建议立即行动:显著增加6种相似BGA的高质量、多样化训练数据(2倍以上是合理起点)。实施针对性数据增强:设计模拟BGA实际成像挑战(反光、模糊、视角变化)的增强方案。升级模型与损失函数:尝试引入注意力机制,将分类损失替换为FocalLoss,并使用CIoU/EIoU。优化训练策略:使用自适应优化器、学习率热身与余弦退火,进行充分长周期的训练(配合早停)。启动主动学习循环:持续收集模型在相
- 前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)
小天才才
一起看paper学AI机器学习深度学习自然语言处理人工智能
文章目录1前言2大模型/自然语言处理2.1FreeAL:在大模型时代实现无需人工的主动学习2.2COLD:中文攻击性语言检测基准2.3将词汇的对比信息融入词嵌入以实现反义词-同义词区分3搜索/推荐/营销3.1PLE:一种面向个性化推荐的新型多任务学习模型3.2MMoE:多任务学习中的任务关系建模4机器学习4.15深度学习5.11前言 本篇博客主要总结一下博主看过的人工智能领域的一些前沿论文,期待
- AI人工智能主动学习的算法解析
AI云原生与云计算技术学院
人工智能学习算法ai
AI人工智能主动学习的算法解析关键词:主动学习、机器学习、人工智能、数据标注、查询策略、半监督学习、模型优化摘要:本文深入解析AI领域中的主动学习算法,这是一种让机器学习模型能够"主动"选择最有价值数据进行学习的智能方法。我们将从基本概念出发,通过生活化的比喻解释其工作原理,详细分析核心算法和数学模型,并提供Python实现示例。文章还将探讨主动学习的实际应用场景、工具资源以及未来发展趋势。背景介
- 在线学习、增量学习和模型适应性优化技术
东北豆子哥
数值计算/数值优化CUDA数据挖掘机器学习
训练数据动态产生:在线学习、增量学习和模型适应性优化技术在仿真计算中,训练数据随时间动态产生时,动态训练神经网络需要结合在线学习、增量学习和模型适应性优化技术。以下是关键方法和步骤:1.在线学习(OnlineLearning)核心思想:模型在新数据到达时立即更新,而非批量训练。实现方式:使用随机梯度下降(SGD)或其变体(如Adam、RMSProp)的单样本或小批量更新。示例代码片段(PyTorc
- 李笑来的《七年就是一辈子》如何帮助PHP程序员进行个人成长?
快点好好学习吧
php
一、李笑来《七年就是一辈子》核心内容解析这本书以“成长型思维”为内核,结合李笑来的个人经历与思考,探讨了关于自我成长、时间管理、认知升级等方面的底层逻辑,核心观点可概括为:1.“七年”的隐喻:人生的阶段性重启作者提出“七年相当于人生的一个周期”,认为每过七年,人可以通过主动学习和改变,让自己的认知、技能、生活状态实现“重生”。举例:若以七年为单位,28岁可视为第四个“辈子”的起点,此时可复盘前21
- 深度学习比较热门的研究方向简单介绍
一点.点
#深度学习知识点深度学习
深度学习作为人工智能领域的核心技术,近年来在理论和应用层面均取得了显著进展。以下结合当前研究热点和前沿动态,详细梳理了深度学习的主要热门研究方向,并引用相关研究成果进行具体阐述:1.持续学习与灾难性遗忘持续学习(ContinualLearning)旨在让模型在动态环境中逐步学习新任务而不遗忘旧知识。域增量学习(Domain-IncrementalLearning,DIL)是其中的关键方向,例如南京
- 用易经智慧看懂人工智能:64卦中的科技密码--蒙卦(䷃)六爻架构揭示人工智能
老猿书声
人工智能科技
卦四:蒙卦(䷃)蒙,亨。匪我求童蒙,童蒙求我。初筮告,再三渎,渎则不告。利贞。《周易》第四卦山水蒙(䷃)揭示了从混沌到觉醒的认知跃升过程,象征智能系统从原始数据中提取模式的初级阶段,揭示启蒙的本质,AI的成长需主动发问(主动学习算法),而非被动灌输(监督学习局限)。一、卦象核心:启蒙的原始代码蒙:混沌未开的状态,既指AI初始训练时的“白板智能”(TabulaRasa),也隐喻人类对AGI认知的
- 2023-2024山东大学机器学习期末回忆
Walk Me Home
机器学习人工智能
1、考试时间:2024/6/122、考试形式:闭卷3、考试科目:机器学习基础(老师:XuXinShun)一、名词解释1、聚类2、集成学习3、回归4、维度灾难5、主动学习二、简答题1、非参数估计相比参数估计有什么优点。说出两种非参数估计的方法,并解释他们的基本思想。2、梯度下降法的过程,并解释为什么每一步目标函数的值每次都是降低3、解释什么是过拟合,并给出解决过拟合的几种方法4、简述决策树算法的过程
- 山东大学软件学院2023-2024二学期机器学习基础考试题回忆版
卑微小亮°
机器学习
一名词解释聚类集成学习回归维度灾难主动学习二简答题1非参数估计比着有参数估计的优点?阐述两个非参数估计的基本思想2阐述梯度下降的主要过程?证明为什么梯度下降每次目标函数值都会减小3什么是过拟合?有什么减少过拟合的方法?4阐述决策树的基本思想,说明ID3的实现过程三综合分析题1用w和b表示svm的初始式子2从最小化结构风险的角度阐述为什么要最大化margin3写出引入拉格朗日乘子后svm的对偶形式的
- 第九章:强化学习(RL)赋能 AI Agents:潜力、挑战与问题建模
(initial)
AIAgents构建实战人工智能agent
引言我们已为AIAgent构建了“形体”——赋予其核心组件、执行逻辑和强大的工具。但要让Agent拥有真正的“灵魂”,实现从“被动执行”到“主动学习与适应”的飞跃,我们需要探索更深层次的智能机制。强化学习(ReinforcementLearning,RL)正是这样一条充满希望的道路。它是一种强大的机器学习范式,旨在让智能体通过与环境的试错交互(Trial-and-Error),依据获得的奖励信号,
- 探索K-近邻算法(KNN):原理、实践应用与文本分类实战
成都怡乐轩科技
近邻算法分类算法
第一部分:引言与背景KNN算法在机器学习领域的重要性及其地位KNN算法作为机器学习中的基石之一,由于其概念直观、易于理解并且不需要复杂的模型训练过程,被广泛应用于多种场景。它在监督学习中占据着特殊的位置,尤其适用于实时或增量学习环境,以及对模型解释性要求较高的场合。强调KNN的重要地位,可以从以下几个方面展开:适应性强:KNN不依赖于数据的具体分布形式,适用于各种线性和非线性关系的数据分类和回归问
- 解决TF-IDF增量学习问题的思路与方案
大泽九章
python开发语言TF-IDF
TF-IDF的传统实现面临增量学习困难,因为IDF计算依赖全局文档统计信息。但是实际的工作当中往往数据是增量的,并且定期增量和不定期增量混合,所以为了实际考虑,还是有必要思考如何解决TF-IDF增量问题的。一、增量学习核心挑战IDF的全局依赖性:新文档加入需要重新计算所有文档的IDF值原始公式:IDF(t)=log(总文档数/包含t的文档数)特征维度变化:新文档可能引入新词项需要动态扩展特征空间历
- 小样本学习综述2025
wuxuand
深度学习计算机视觉深度学习人工智能
一、Few-ShotClass-IncrementalLearningforClassificationandObjectDetection:ASurvey用于分类和目标检测的少样本类增量学习:综述引用:@ARTICLE{10840313,author={Zhang,JinghuaandLiu,LiandSilvén,OlliandPietikäinen,MattiandHu,Dewen},jou
- 【DeepThinking】人生反思洞察之「知行合一」(经验贴)
碣石潇湘无限路
经验分享笔记生活人生深度思考知行合一
引言最近,我深刻体会到一种焦虑:既有生活的现实压力,也有对人生方向的迷茫与无奈。回顾自身,我发现这并不是物质层面的匮乏或欲望驱动,而是对“我是谁”“我想要什么”“我能做什么”的追问。这种焦虑,常常让我想起人的出生:起初我们依赖父母和环境,被动地活着;成年后,我们凭借主动学习、工作和不断积累的信念,去实现自我价值。但终有一天,我们会停下来审视自己,看清一些本质问题,并且发觉自己需要对这一生负责:我应
- LWC-KD:图结构感知的推荐系统增量学习对比知识蒸馏
宇直不会放弃
GKD-Middlelayer人工智能pythonchatgptgpu算力深度学习机器学习神经网络
LWC-KD:图结构感知的推荐系统增量学习对比知识蒸馏《GraphStructureAwareContrastiveKnowledgeDistillationforIncrementalLearninginRecommenderSystems》2021作者是YueningWang、YingxueZhang和MarkCoates论文地址:https://dl.acm.org/doi/10.1145/
- DeepSeek动态增量学习技术详解与实战指南
燃灯工作室
Deepseek人工智能机器学习数据挖掘
一、主题背景1.Why:破解模型持续进化难题传统全量训练模式面临三大困境:金融风控场景中,每周新增百万级欺诈样本时,全量训练耗时从3小时增至8小时(数据量年增长300%)医疗影像诊断模型遇到新病症类型时,需要重新标注全部历史数据智能客服系统无法保留上周学习的行业专有术语DeepSeek方案实现:训练耗时:新增数据量20%时,耗时仅增加35%(传统方法需100%)灾难性遗忘率:在CLVision20
- 机器学习(一) 本文(3万字) | 机器学习概述 |
小酒馆燃着灯
机器学习人工智能深度学习目标检测vscodepytorchpython
推荐阅读,点击查看文章目录1.统计学习(机器学习)1.1特点1.2对象1.3目的1.4方法1.5步骤2.基本分类2.1监督学习2.1.1输入空间、特征空间和输出空间2.1.2概率分布2.1.3假设空间2.1.4问题的形式化2.2无监督学习2.3强化学习2.4半监督学习与主动学习3.基于模型分类4.基于技巧分类4.1贝叶斯学习4.2核方法5.统计学习三要素5.1模型5.2策略5.2.1损失函数与风险
- KDD 2023 | 先睹为快!KDD 2023论文合集50篇(附下载地址)
马拉AI
机器学习人工智能深度学习
下载地址:点我跳转1.DoubleAdapt:AMeta-learningApproachtoIncrementalLearningforStockTrendForecastingCode:NoneArea:一种用于股票趋势预测增量学习的元学习方法2.HomoGCL:RethinkingHomophilyinGraphContrastiveLearningCode:https://github.c
- 最小边际采样在分类任务中的应用
ningaiiii
机器学习与深度学习分类数据挖掘人工智能
最小边际采样在分类任务中的应用在机器学习的分类任务里,如何高效利用有限的标注数据,一直是研究的重点。最小边际采样(LeastMarginSampling)作为主动学习策略中的一种,为解决这一问题提供了独特的思路。本文将深入探讨最小边际采样在分类任务中的原理、应用以及优势与挑战。一、最小边际采样的原理最小边际采样的核心概念是基于模型预测概率来衡量样本的不确定性。在一个多分类问题中,模型会对每个样本预
- 双线性函数的紧凑超平面散列(Compact Hyperplane Hashing with Bilinear Functions)阅读笔记
Legend105CC
机器学习主动学习机器学习
Abstract超平面散列(Hyperplanehashing)的目的是快速搜索到离超平面最近的点,并在使用支持向量机(SVM)扩大主动学习方面显示出实际效果。存在问题:不幸的是,现有的随机方法需要长哈希码才能达到合理的搜索精度,因此会降低搜索速度和内存开销。解决方法:为此,论文(CompactHyperplaneHashingwithBilinearFunctions)提出了一种新的超平面哈希技
- 高效学习方法分享:提升学习效率与深度的实用技巧
威哥说编程
学习方法
学习是一个不断积累与优化的过程。无论你是学生、职场新人,还是希望提升自己的专业技能,掌握高效的学习方法都至关重要。在这篇文章中,我们将分享一些提升学习效率的策略,帮助你在有限的时间内获取更多的知识,且能记得更牢靠、理解得更透彻。一、理解学习的本质:主动学习VS被动学习在学习过程中,区分主动学习和被动学习至关重要。被动学习通常指的是通过听、看、读等方式接受信息,而主动学习则是指积极地进行思考、讨论、
- 软件测试目标
yaoyaoyao可爱呀
python功能测试
P1–方向管理方向:测试组长–测试主管–测试经理–测试负责人–总监(CTO)技术方向:手工测试–自动化测试–测试开发–测试架构–测试专家细心,耐心,逆向思维,互联网行业学习方式主动学习:小组讨论(50%)实作演练(70%)转教别人,立即应用(90%)复习方式根据艾宾浩斯遗忘曲线,在(1,2,4,7)天,20分钟快速复习1遍P2学习目标测试基础:软件及测试相关知识测试设计:如何进行测试缺陷管理:测试
- 【机器学习】主动学习-增加标签的操作方法-样本池采样(Pool-Based Sampling)
IT古董
机器学习机器学习学习人工智能
Pool-BasedSamplingPool-basedsampling是一种主动学习(ActiveLearning)方法,与流式选择性采样不同,它假设有一个预先定义的未标注样本池,算法从中选择最有价值的样本进行标注,以提升模型的性能。这种方法广泛应用于需要人工标注的场景,例如文本分类、图像识别等。核心思想预先准备一个未标注数据池(UnlabeledDataPool)。使用初始标注数据训练一个模型
- 提高教师信息素养,提高道德与法治课教学效益
长白159宋彦红
提高教师信息素养,提高道德与法治课教学效益随着经济和社会的发展,信息技术已经运用到课堂教学中,为课堂教学展示了一个崭新的天地。的确,信息技术形象、生动、直观性强,能够将课本中的一些抽想的概念直接展示在学生面前,从而调动学生的眼、耳、脑,让他们兴奋起来,变被动学习为主动学习,充分发挥教师的教育引导作用,创造一个可以使学生积极参与的场景。在制作、使用信息技术的实践过程中,本文拟就教师提升信息素养的必要
- 让你过得越来越好的几点建议
素缘之美
越拼的人因为身边的人很拼或者很优秀,所以,一定要挤进优秀的圈子越长大,我们感觉与人的差距越大,于是就狠下心来,报名各种培训班来学习,或者买各种励志成长的书来看再懒的人都有上进的时候,与其未来我们学不动的时候学,还不如乘现在逼自己一把,努力的去学习提升自己10年,20年后,你就能在优秀的圈子里混的顺风顺水这是永久不变的规律!!!不是鸡汤,社会在进步,你不去学习,不进步你会被淘汰的养成主动学习习惯,逼
- 转变教师角色,发挥学生主体作用
双辽646杨莹
首先是教师要转变观念。当今知识的迅速更新使教育的任务越来越繁重,教师的工作和学习似乎达到极限,教育再也无法实现“将一切知识教给一切人的理想。”这就为教育提出了新的要求。要求我们教育不仅要传授知识给学生,更重要的是要教给学生获得知识的方法,培养学生的能力。传统教学过于注重知识的传授而忽视了积极主动学习。已不能充分调动学生的积极性和主动性,激发学生的学习动机和学习愿望。随着信息社会的到来,人的学习主动
- 吸引力法则工作坊学习打卡记录
秋乐飞扬
图片发自App刘宇秀2019年12月21日27天/100天一.亿万富翁制造机一一照镜子工程的体验和感受美女,早上好,我爱你二、欣赏赞美认同欣赏赞美认同我欣赏赞美认同我的领悟力我欣赏赞美认同我的能力我欣赏赞美认同我的富裕我欣赏赞美认同我的堂妹刘凤平我欣赏赞美认同江欧师姐我欣赏赞美认同大师姐三.感恩日记1.我很感恩我的组员!她们在我的带动下,慢慢积极主动学习打卡!谢谢,谢谢,谢谢。2.我很感恩我的情绪
- 2022-12-09
懒兔他媳妇
最近发现女儿在学习方面有些懈怠,所以我今天就跟她好好聊了聊,虽然聊的过程有点不愉快,但聊完的效果还是挺不错的,她重新振作起来,又开始好好学习了。现在影响孩子们学习的因素真的是太多了,我虽然在努力地营造学习的氛围,但还是没有把她引领到爱学习,主动学习的这条道路上。每每想起这些就感觉无比失落,也许她还小,也许我做得还不够好。有时候感觉一直盯着她,我俩都好疲惫。所以我觉得我应该放开一些。今天又完成了两张
- 2021-06-11
翅之梦
凡事预则立。一场好的培训,成功在于开始之前。一个老师的准备分三类,内容上做好准备,心态上做好准备,以及设备上做好准备。雷军和乔布斯的例子让人深思。成功都是有原因的。成人学习总的原则是:互动性强,学有所得,引起共鸣和兴趣,促进主动思考,自主认同。书上的指导原则分别是温故知新原则(学习与总结相结合)、适应匹配原则(需求及知识点相关性强)、积极反馈原则(内动力)、主动学习原则、多维感官原则(增强记忆)、
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l