python中的装饰器

装饰器是程序开发中经常会用到的一个功能,用好了装饰器,开发效率如虎添翼,所以这也是Python面试中必问的问题,但对于好多初次接触这个知识的人来讲,这个功能有点绕,自学时直接绕过去了,然后面试问到了就挂了,因为装饰器是程序开发的基础知识,这个都不会,别跟人家说你会Python, 看了下面的文章,保证你学会装饰器。

1、先明白这段代码

#### 第一波 ####
def foo():
    print('foo')

foo #表示是函数
foo() #表示执行foo函数

#### 第二波 ####
def foo():
    print('foo')

foo = lambda x: x + 1

foo() # 执行下面的lambda表达式,而不再是原来的foo函数,因为foo这个名字被重新指向了

2、需求来了

初创公司有N个业务部门,1个基础平台部门,基础平台负责提供底层的功能,如:数据库操作、redis调用、监控API等功能。业务部门使用基础功能时,只需调用基础平台提供的功能即可。如下:

############### 基础平台提供的功能如下 ###############

def f1():
    print('f1')

def f2():
    print('f2')

def f3():
    print('f3')

def f4():
    print('f4')

############### 业务部门A 调⽤基础平台提供的功能 ###############

f1()
f2()
f3()
f4()

############### 业务部门B 调⽤基础平台提供的功能 ###############

f1()
f2()
f3()
f4()

目前公司有条不紊的进行着,但是,以前基础平台的开发人员在写代码时候没有关注验证相关的问题,即:基础平台的提供的功能可以被任何人使用。现在需要对基础平台的所有功能进行重构,为平台提供的所有功能添加验证机制,即:执行功能前,先进行验证。
老大把工作交给Low B,他是这么做的:

跟每个业务部门交涉,每个业务部门自己写代码,调用基础平台的功能之前先验证。诶,这样一来基础平台就不需要做任何修改了。太棒了,有充分的时间泡妹子...

当天Low B 被开除了…
老大把工作交给 Low BB,他是这么做的:

############### 基础平台提供的功能如下 ###############

def f1():
    # 验证1
    # 验证2
    # 验证3
    print('f1')

def f2():
    # 验证1
    # 验证2
    # 验证3
    print('f2')

def f3():
    # 验证1
    # 验证2
    # 验证3
    print('f3')

def f4():
    # 验证1
    # 验证2
    # 验证3
    print('f4')

############### 业务部门不变 ###############
### 业务部门A 调用基础平台提供的功能###

f1()
f2()
f3()
f4()

### 业务部门B 调用基础平台提供的功能 ###

f1()
f2()
f3()
f4()


过了一周 Low BB 被开除了…

老大把工作交给 Low BBB,他是这么做的:

只对基础平台的代码进⾏重构,其他业务部门无需做任何修改

############### 基础平台提供的功能如下 #############

def check_login():
    # 验证1
    # 验证2
    # 验证3
    pass

def f1():
    check_login()
    print('f1')

def f2():
    check_login()
    print('f2')

def f3():
    check_login()
    print('f3')

def f4():
    check_login()
    print('f4')

老大看了下Low BBB 的实现,嘴⻆漏出了一丝的欣慰的笑,语重心长的跟Low BBB聊了个天:

老大说:
写代码要遵循 开放封闭 原则,虽然在这个原则是用的面向对象开发,但是也适用于函数式编程,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:
封闭:已实现的功能代码块
开放:对扩展开发

如果将开放封闭原则应用在上述需求中,那么就不允许在函数 f1 、f2、f3、f4的内部进行修改代码,老板就给了Low BBB一个实现方案:

def w1(func):
    def inner():
        # 验证1
        # 验证2
        # 验证3
        func()
    return inner

@w1
def f1():
    print('f1')
@w1
def f2():
    print('f2')
@w1
def f3():
    print('f3')
@w1
def f4():
    print('f4')

对于上述代码,也是仅仅对基础平台的代码进行修改,就可以实现在其他人调用函数 f1 f2 f3 f4 之前都进行【验证】操作,并且其他业务部门无需做任何操作。

Low BBB心惊胆战的问了下,这段代码的内部执行原理是什么呢?
老大正要生气,突然Low BBB的手机掉到地上,恰巧屏保就是Low BBB的女友照片,老大一看一紧一抖,喜笑颜开,决定和Low BBB交个好朋友。
详细的开始讲解了:
单独以f1为例:

def w1(func):
    def inner():
        # 验证1
        # 验证2
        # 验证3
        func()
    return inner

@w1
def f1():
    print('f1')

python解释器就会从上到下解释代码,步骤如下:
1. def w1(func): ==>将w1函数加载到内存
2. @w1

没错, 从表面上看解释器仅仅会解释这两句代码,因为函数在 没有被调用之前其内部代码不会被执行。

从表面上看解释器着实会执行这两句,但是 @w1 这一句代码里却有大文章, @函数名 是python的一种语法糖。
上例@w1内部会执行以下操作:
执行w1函数

执行w1函数 ,并将 @w1 下面的函数作为w1函数的参数,即:@w1
等价于 w1(f1) 所以,内部就会去执行:

def inner():
    #验证 1
    #验证 2
    #验证 3
    f1() # func是参数,此时 func 等于 f1
return inner# 返回的 inner,inner代表的是函数,非执行函数 ,其实就是将原来的 f1

w1的返回值

将执行完的w1函数返回值 赋值 给@w1下面的函数的函数名f1 即将w1的返回值再重新赋值给 f1,即:

新f1 = def inner():
           #验证 1
           #验证 2
           #验证 3
           原来f1()

       return inner

所以,以后业务部门想要执行 f1 函数时,就会执行 新f1 函数,在新f1函数内部先执行验证,再执行原来的f1函数,然后将原来f1 函数的返回值返回给了业务调用者。

如此一来, 即执行了验证的功能,又执行了原来f1函数的内容,并将原f1函
数返回值 返回给业务调用着

Low BBB 你明白了吗?要是没明白的话,我晚上去你家帮你解决吧!!!

3. 再议装饰器

#定义函数:完成包裹数据
def makeBold(fn):
    def wrapped():
    return "" + fn() + ""
    return wrapped

#定义函数:完成包裹数据
def makeItalic(fn):
    def wrapped():
        return "" + fn() + ""
    return wrapped

@makeBold
def test1():
    return "hello world-1"

@makeItalic
def test2():
    return "hello world-2"

@makeBold
@makeItalic
def test3():
    return "hello world-3"

print(test1()))
print(test2()))
print(test3()))

运行结果:

hello world-1
hello world-2
hello world-3

4. 装饰器(decorator)功能

1. 引用日志
2. 函数执行时间统计
3. 执行函数前预备处理
4. 执行函数后清理功能
5. 权限校验等场景
6. 缓存

5. 装饰器示例
例1:无参数的函数

from time import ctime, sleep

def timefun(func):
    def wrappedfunc():
        print("%s called at %s"%(func.__name__, ctime()))
        func()
    return wrappedfunc

@timefun
def foo():
    print("I am foo")

foo()
sleep(2)
foo()

上面代码理解装饰器执行行为可理解成

foo = timefun(foo)
#foo先作为参数赋值给func后,foo接收指向timefun返回的wrappedfunc
foo()
#调⽤foo(),即等价调⽤wrappedfunc()
#内部函数wrappedfunc被引用,所以外部函数的func变量(自由变量)并没有释放
#func里保存的是原foo函数对象

例2:被装饰的函数有参数

from time import ctime, sleep

def timefun(func):
    def wrappedfunc(a, b):
        print("%s called at %s"%(func.__name__, ctime()))
        print(a, b)
        func(a, b)
    return wrappedfunc

@timefun
def foo(a, b):
    print(a+b)

foo(3,5)
sleep(2)
foo(2,4)

例3:被装饰的函数有不定长参数

from time import ctime, sleep

def timefun(func):
    def wrappedfunc(*args, **kwargs):
        print("%s called at %s"%(func.__name__, ctime()))
        func(*args, **kwargs)
    return wrappedfunc

@timefun
def foo(a, b, c):
    print(a+b+c)

foo(3,5,7)
sleep(2)
foo(2,4,9)

例4:装饰器中的return

from time import ctime, sleep

def timefun(func):
    def wrappedfunc():
        print("%s called at %s"%(func.__name__, ctime()))
        func()
    return wrappedfunc

@timefun
def foo():
    print("I am foo")

@timefun
def getInfo():
    return '----hahah---'

foo()
sleep(2)
foo()

print(getInfo())

执行结果:

foo called at Fri Nov 4 21:55:35 2016
I am foo
foo called at Fri Nov 4 21:55:37 2016
I am foo
getInfo called at Fri Nov 4 21:55:37 2016
None

如果修改装饰器为 return func() ,则运行结果:

foo called at Fri Nov 4 21:55:57 2016
I am foo
foo called at Fri Nov 4 21:55:59 2016
I am foo
getInfo called at Fri Nov 4 21:55:59 2016
----hahah---

总结:
一般情况下为了让装饰器更通用,可以有return
例5:装饰器带参数,在原有装饰器的基础上,设置外部变量

#decorator2.py
from time import ctime, sleep
def timefun_arg(pre="hello"):
    def timefun(func):
        def wrappedfunc():
            print("%s called at %s %s"%(func.__name__, ctime(), pre))
            return func()
        return wrappedfunc
    return timefun

@timefun_arg("itcast")
def foo():
    print("I am foo")

@timefun_arg("python")
def too():
    print("I am too")

foo()
sleep(2)
foo()

too()
sleep(2)
too()

可以理解为
foo()==timefun_arg("itcast")(foo)()

例6:类装饰器(扩展,非重点)

装饰器函数其实是这样一个接扣约束,它必须接受一个callable对象作为参数,然后返回一个callable对象。在Python中一般callable对象都是函数,但也有例外。只要某个对象重写了 __call__() 方法,那么这个对象就是callable的。

class Test():
    def __call__(self):
        print('call me!')

t = Test()
t() # call me

类装饰器demo

class Test(object):
    def __init__(self, func):
        print("---初始化---")
        print("func name is %s"%func.__name__)
        self.__func = func
    def __call__(self):
        print("---装饰器中的功能---")
        self.__func()

#说明:
#1. 当⽤Test来装作装饰器对test函数进行装饰的时候,首先会创建Test的实例对象
# 并且会把test这个函数名当做参数传递到__init__⽅法中
# 即在__init__方法中的func变量指向了test函数体
#
#2. test函数相当于指向了用Test创建出来的实例对象
#
#3. 当在使用test()进形调用时,就相当于让这个对象(),因此会调用这个对象的__call__方法
#
#4. 为了能够在__call__方法中调用原来test指向的函数体,所以在__init__方法中就需要一个实例属性来保存这个函数体的引用
# 所以才有了self.__func = func这句代码,从而在调用__call__方法中能够调用到test之前的函数体
@Test
def test():
    print("----test---")
test()
showpy()#如果把这句话注释,重新运行程序,依然会看到"--初始化--"

运行结果如下:

---初始化---
func name is test
---装饰器中的功能---
----test---

 

你可能感兴趣的:(Python)