lower_bound,upper_bound的第四个参数


1.lower_bound的第四个参数的用法:

先看代码:

#include 
using namespace std;
struct node{
    int x,y;
};
struct cmp{
    int operator()(const node a,const node b){
        return a.x

大致的模板就是这样,注意,引用cmp的时候是有()的。

下面来解释一下加入cmp()参数的lower_bound的运行过程

struct cmp{
    int operator()(const node a,const node b){
        return a.x
在这里, a代表的就是num数组的数字,而b代表的就是要比较的数字,如果cmp的retur是1的话那么二分查找就会往右边进行,而如果是0的话那么就会往左边进行。

我们还是举数据来解释吧


假设mid代表num区间的中间位置

比方说输入的是个68,那么首先68会和50(二分查找嘛,自然是从num数组的中间开始进行比较的拉)进行比较因为50<68为1,那么mid就会往右跑了,接下来因为75<68为零所以mid又会往左跑,接下来就是63<68然后mid又往右跑,直到逼近到<=68的数字中最接近68的数字

假设cmp是这样的就比较神奇了:

struct cmp{
    int operator()(const node a,const node b){
        return a.x>b.x;
    }
};
这次拿68和49举例

对于68而言50>68不满足,然后往左跑,然后越跑越不满足,于是就输出了0;

对于49而言50>49满足,然后往右跑,越跑越满足根本停不下来直到跑到最右端于是就输出了100......

注意:如果这是一个递减的序列的话那么cmp也要发生变化,具体怎么变参照上面的例子,主要是因为太长不想写.......哈哈哈.......

对于upper_bound就比较神奇了,它是这么利用cmp的:

struct cmp{
    int operator()(const node a,const node b){
        return a.x

a代表要比较的数字,b代表num数组,如果return为1就往左跑,否则往右跑。(我会告诉你之所以我这么认为仅仅是因为这符合我的经验法则吗

我们还是举例吧,比如num序列是这样的:

11223344

12345678(这一行代表上面那些数字对应的下标)

当用lower_bound来查找2应该插入哪个位置的时候是这样的:首先num[4]与2比较,num[4]<2是false的,所以往左跑;然后num[2]<2是true的,往右跑;直到逼近到num[3]这个位置

当用upper_bound来查找2应该插入哪个位置的时候是这样的:首先2与num[4]比较。2


具体的cmp形参的变化过程看官可以用以下代码测试以下:

#include 
using namespace std;
struct node{
    int x,y;
};
struct cmp{
    int operator()(const node a,const node b){
        printf("*%d %d\n",a.x,b.x);
        return a.x


另外,set和map,和map容器也有直接的内置二分查找,这样使用:

sets;

s.upper_bound()或者s.lower_bound(这里填参数);

注意:

对于map,他的lower_bound实在first_int里面查找你填入的参数的:比如这样

#include 
#define LL long long
#define inf 1e9+1
using namespace std;
int main(){
    mapm;
    for(int i=1;i<=5;i+=2)m[i]=i+4;
    printf("%d\n",*m.lower_bound(2));
}


特别声明!特别声明!

本人不保证上面内容确实是lower_bound和upper_bound真正的实现方法,只是在本人的一些测试中上面的这些能够正常解释我的所有样例。

如果有路过dalao发现任何错误还望提出,以免误人子弟。谢谢!

你可能感兴趣的:(stl)