- yolov8的第一次实验报告
算法宇宙
YOLO人工智能计算机视觉
1.实验概述实验名称:占道经营目标检测模型实验目标:提高模型的精确率(Precision)和召回率(Recall),使其接近1。实验日期:[2025-01-16]2.数据集数据集名称:[datasets]数据集大小:[2.68Gb]数据集描述:[数据集主要分两个类别:zdjy_ld,zdjy_gd]注释:占道经营流动,占道经营固定3.模型配置3.1基础配置·模型类型:YOLOv8·预训练模型:YO
- c++STL常用算法之排序算法——全面总结(附案例解析)(二十四)
磊磊cpp
C/C++STL详细教学C++STL
这里有C++STL——全面总结详细教程(附案例解析)(持续更新中)常用排序算法学习目标:掌握常用的排序算法算法简介:sort//对容器内元素进行排序random_shuffle//洗牌指定范围内的元素随机调整次序merge//容器元素合并,并存储到另一容器中reverse//反转指定范围的元素sort功能描述:对容器内元素进行排序函数原型:sort(iteratorbeg,iteratorend,
- 李开复:AI 2.0 时代的机遇
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
人工智能,深度学习,Transformer,大模型,通用人工智能,AI2.0,应用场景,未来趋势1.背景介绍人工智能(AI)技术近年来发展迅速,从语音识别、图像识别到自然语言处理等领域取得了突破性进展。其中,深度学习作为人工智能的核心技术之一,推动了AI技术的飞速发展。然而,深度学习模型的训练成本高、数据依赖性强、可解释性差等问题仍然制约着AI技术的进一步发展。李开复先生在《AI2.0时代的机遇》
- YOLOv8n-OBB使用C#在windows10进行部署(CPU)
cd_Ww777
YOLO
1.训练YOLOv8-OBB模型1.1数据集制作所用标注工具:X-AnyLabeling下载链接:https://github.com/CVHub520/X-AnyLabeling/releases/download/v2.3.6/X-AnyLabeling-CPU.exe附上两张图片为标注过程中的重要步骤;标注快捷键的使用具体参考官方文档,附图为简单实用的快捷键。https://github.c
- 【认知框架重构】
调皮的芋头
人工智能神经网络
在信息高度互联的今天,寻找信息洼地和利益洼地已成为获取超额收益的核心能力。这两种"洼地"本质上是市场非有效性的具象化表现,其形成机制和挖掘方法值得系统研究。以下从底层逻辑到操作层面的深度分析:一、认知框架重构时空差理论:信息传播存在物理时滞(如跨境政策变化)、认知时滞(专业门槛导致的理解延迟)、传播层级衰减(信息在传递中的失真)熵增对抗模型:市场参与者维持信息优势需要持续负熵输入,当维护成本超过收
- YOLOv8 的简介 及C#中如何简单应用YOLOv8
码上有潜
YOLOv8YOLO
YOLOv8是YOLO(YouOnlyLookOnce)系列中的最新版本,是一种用于目标检测和图像分割的深度学习模型。YOLO模型以其快速和准确的目标检测性能而著称,广泛应用于实时应用程序中。主要特点高效性:YOLOv8在保持高检测速度的同时,进一步提高了检测精度。端到端训练:可以直接从图像输入端到分类结果输出,简化了训练和部署过程。改进的架构:包括更深的网络结构、更复杂的特征提取方法以及更高效的
- llama.cpp 和 LLM(大语言模型)
这个懒人
llama语言模型人工智能
llama.cpp和LLM(大语言模型)的介绍,以及两者的关联与区别:1.LLM(LargeLanguageModel,大语言模型)定义:LLM是基于深度学习技术(如Transformer架构)构建的超大参数量的自然语言处理模型。它通过海量文本数据训练,能够生成连贯、语义丰富的文本,完成问答、创作、推理等任务。特点:参数规模大:如GPT-3(1750亿参数)、Llama-65B(650亿参数)等。
- LLaMA-Factory 微调训练
zsh_abc
llamadocker深度学习人工智能pythonlinux
LLaMA-Factory微调训练该框架功能,标注-微调-导出-合并-部署,一整条流程都有,而且训练时消耗的gpu算力也会小一些一,安装(推荐在linux中训练,win可以用wsl+docker)gitclonehttps://github.com/hiyouga/LLaMA-Factory.gitcdLLaMA-Factory#根据cuda版本选择安装pytoch版本pip3installtor
- GitHub Copilot两期连看:开发流程全览及 Copilot 在 SQL 开发中的妙用
microsqlgithub
GitHubCopilot,这款备受瞩目的AI开发助手,正以前所未有的姿态重塑开发流程。而现在,专为开发者和技术团队精心打造的GitHubCopilotFridays系列课程,正持续为大家解锁Copilot的无限潜能。今天,我们迎来了第五期和第六期课程,这将是两场不容错过的技术盛宴,深度探索Copilot在更多复杂场景、特定角色工作流中的卓越应用,准备好与我们一同深入挖掘其中的奥秘了吗?GitHu
- Yolov11目标检测(ultralytics)
@M_J_Y@
目标检测YOLO目标检测人工智能
Yolov11目标检测(ultralytics)1.克隆仓库2.安装环境依赖3.训练、验证、推理以及onnx模型导出1.克隆仓库从官网下载Yolov11到本地。
[email protected]:ultralytics/ultralytics.git2.安装环境依赖pipinstall-e.-ihttps://pypi.mirrors.ustc.edu.cn/simple/3.训练、验证
- 【蓝牙协议栈】【BR/EDR】【AVRCP】AVRCP常用指令介绍
风云说通信
精讲蓝牙协议栈蓝牙协议栈BR/EDRAVRCP音视频远程控制协议
1.精讲蓝牙协议栈(BluetoothStack):SPP/A2DP/AVRCP/HFP/PBAP/IAP2/HID/MAP/OPP/PAN/GATTC/GATTS/HOGP等协议理论2.欢迎大家关注和订阅,【精讲蓝牙协议栈】和【AndroidBluetoothStack】专栏会持续更新中.....敬请期待!1.AVRCP常用指令协议栈介绍1.1AVRCPPlay播放蓝牙音乐,使用AVCTP的AV
- 笔记:代码随想录算法训练营Day65:LeetCode115.不同的子序列\583. 两个字符串的删除操作\72. 编辑距离
jingjingjing1111
算法数据结构leetcode动态规划
学习资料:代码随想录115.不同的子序列力扣题目链接递推公式:求的是个数而不是长度,dp[i-1][j]代表的是用i-2为结尾的s的子序列去能凑出j-1为结尾的t的子序列的方法数,代表的是dp[i][j]的上一状态,当s[i-1]==t[i-1],说明可以从dp[i-1][j-1]的代表的用i-2为结尾的s的子序列去能凑出j-2为结尾的t的子序列的方法数方法数状态各加一个数抵达dp[i][j]代表
- 笔记:代码随想录算法训练营day48:739. 每日温度\496.下一个更大元素 I\503.下一个更大元素II
jingjingjing1111
笔记
学习资料:代码随想录单调栈适合找左边或右边比当前大或小的元素739.每日温度力扣题目链接大致意思为用栈存储当前值以及比当前的小的值,但后遇到比当前值大的值的时候再计算非常巧妙的是,最后需要等于0的时候,正好后面没有比当下大的数的那个数的位置的result保留为0,不用处理classSolution{public:vectordailyTemperatures(vector&temperatures
- Java 代码的重构技巧:从混乱到整洁的蜕变
叶间清风1998
java重构python
目录一、重构的概念与重要性二、常见的重构手法提取方法(ExtractMethod)引入多态(IntroducePolymorphism)三、重构的实施步骤制定重构计划编写单元测试逐步重构与验证在Java项目的生命周期中,随着业务的不断发展和功能的持续迭代,代码往往会逐渐变得复杂和混乱。代码中可能出现重复逻辑、不合理的类与方法设计以及难以理解的复杂算法等问题,这不仅增加了开发人员的理解成本,还使得后
- 代码随想录算法训练营第一天 | LeetCode 704、27
Bingjiaokong
随想录刷题算法leetcode
文章目录前言一、LeetCode7041.闭区间2.开区间二、LeetCode271.暴力求解2.快慢指针总结前言LeetCode题目:704、27Takeaway:二分法边界处理、快慢指针一、LeetCode7041.闭区间定义target是在一个在左闭右闭的区间里,也就是[left,right]#includeclassSolution{public:intsearch(vector&nums
- 2024年HarmonyOS鸿蒙最新鸿蒙应用开发当前支持的颜色枚举值(2),2024年最新社招面试题目
2401_84850323
程序员鸿蒙面试学习
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上鸿蒙开发知识点,真正体系化!由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新需要这份系统化的资料的朋
- 笔记:代码随想录算法训练营day55:LeetCode42. 接雨水、84.柱状图中最大的矩形
jingjingjing1111
算法
学习资料:代码随想录42.接雨水力扣题目链接暴力解法超时了,直接从双指针开始双指大概思路为创立两个数组记录两侧的最大值,这里的最大值是真正的最大的值,而不是最近的那个比较大的值,即所谓的按列计算,后面单调栈方法找到的是上一个较大值和下一个较大值,是所谓的按行计算,这样这个凹槽可能身处更大的凹槽中,所以每次都要乘一个宽度,类似与按层往上摞classSolution{public:inttrap(ve
- 代码随想录算法训练营第六十五天| 图论10
Rachela_z
算法图论
Bellman_ford队列优化算法(又名SPFA)代码随想录importcollectionsdefmain():n,m=map(int,input().strip().split())edges=[[]for_inrange(n+1)]for_inrange(m):src,dest,weight=map(int,input().strip().split())edges[src].append
- 智能科技助力健康生活:开启体育与健身的新纪元
inscode_010
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE智能科技助力健康生活:开启体育与健身的新纪元在现代社会,科技的迅猛发展不仅改变了我们的生活方式,也深刻影响了体育与健身领域。从智能穿戴设备到虚拟现实训练系统,技术的进步为人们提供了前所未有的健身体验。而今天,我们将探讨一款强大的智能化工具——它不仅仅适用于编程开发,更能在体育与健身领域发挥巨大作用,帮助我们实现更加高效、科
- Python 学习之旅:持续学习和扩展(八)学习 seaborn 进行数据可视化
喜-喜
Python学习信息可视化python学习seaborn
在Python数据可视化的进阶道路上,seaborn是一款不容小觑的库。它建立在matplotlib之上,却拥有独特的风格和强大的功能,让数据可视化变得更加简洁、美观且富有洞察力。如果说matplotlib是一位基本功扎实的画师,那seaborn就是一位懂得时尚潮流的设计师,能为你的数据图披上精致的外衣。下面,就让我们一同走进seaborn的奇妙世界,领略它在数据可视化领域的独特魅力。一、se
- 大模型与自然语言理解(NLU):差异与联系
技术流 Gavin
AIoTpython语言模型ai
近年来,人工智能领域取得了显著进展,尤其是在自然语言处理(NLP)方面。大模型和自然语言理解(NLU)作为NLP的两个重要分支,常常被提及,但它们之间存在着本质区别。1.定义与目标大模型:通常指拥有庞大参数规模(数十亿甚至数千亿)的深度学习模型,例如GPT-3、LaMDA等。它们通过海量文本数据进行训练,旨在学习语言的统计规律,并能够生成流畅、连贯的文本。NLU:是NLP的一个子领域,专注于让机器
- 技术解析麦萌短剧《阴阳无极》:从「性别偏见下的对抗训练」到「分布式江湖的架构重构」
短剧萌
分布式架构重构
《阴阳无极》以陈千叶的武道觉醒为线索,展现了传统系统的路径依赖困境与对抗性策略的范式突破。本文将从算法博弈视角拆解这场武侠革命的底层逻辑,探讨如何在性别偏见的数据集中完成模型的自我进化。1.初始模型偏差:继承权剥夺与梯度冻结陈千叶(Agent_C)的成长可视为有偏数据集上的训练:特征歧视:太极门继承规则(Legacy_Rule)作为传统分类器,强行将性别(Gender_Feature)设为负权重参
- 麦萌短剧技术解构《我跑江湖那些年》:从“仇恨驱动型算法”到“多方安全计算的自我救赎”
短剧萌
算法安全
《我跑江湖那些年》以慕青青的复仇与蜕变为主线,展现了分布式系统中的信任崩塌与对抗性博弈的模型优化。本文将从机器学习视角拆解这场“江湖算法”的技术隐喻,探讨如何在数据污染的困境中实现参数净化。1.初始训练集:暴力采样与特征空间坍缩慕青青(Agent_M)的成长环境可视为一个高偏差训练集:数据污染事件:村主任(Node_V)通过恶意共识算法(如嫉妒驱动的PoW机制),煽动村民(Sub_Nodes)对果
- 数据挖掘中的数据预处理:填充与主成分分析
阿什么名字不会重复呢
数据挖掘人工智能
数据挖掘中的数据预处理:填充与主成分分析在数据挖掘中,数据预处理是非常重要的一步。现实世界中的数据通常是不完整的,包含噪声、缺失值或异常值,因此在进行模型训练或分析前,我们需要对数据进行清理和转换。本文将介绍数据预处理中的两种常见填充方法(01填充和均值填充),以及一种用于降维的技术——主成分分析(PCA)。一、数据填充数据填充是处理缺失值的常见方法。在实际场景中,数据集可能会因为各种原因出现缺失
- 前端学习路线:从零基础到初级工程师的完整指南(2025最新版)
超浪的晨
前端学习
前言作为连接设计与技术的核心岗位,前端开发在数字化时代持续释放强大生命力。本路线图专为初学者设计,通过「渐进式学习路径」+「实战项目驱动」的模式,助你系统掌握现代前端开发技能体系。一、基础筑基阶段(4-6周)三大核心基石HTML5语义化标签()表单验证与多媒体支持SEO基础与无障碍访问CSS3Flex/Grid布局(重点掌握)动画与过渡(@keyframes+transition)响应式设计(媒体
- 大数据开发之Kubernetes篇----安装部署Kubernetes&dashboard
豆豆总
kubernetes
Kubernetes简介由于公司有需要,需要将外后的服务外加Tensorflow模型部署加训练全部集成到k8s上,所以特意记录下这次简单部署的过程。k8s安装部署首先,我们在部署任何大型的组件前都必须要做的事情就是关闭防火墙和设置hostname了vi/etc/hostsk8s001xxx.xxx.xxx.xxk8s002xxx.xxx.xxx.xx...systemctlstopfirewall
- 从零学习大模型(六)-----LoRA(上)
懒惰才能让科技进步
大语言模型gpt-3人工智能深度学习chatgpt语言模型
LoRA简介LoRA(Low-RankAdaptation)是一种参数高效的微调技术,旨在降低微调大规模预训练模型的存储和计算成本。**其核心思想是通过对模型的特定参数进行低秩分解,仅对少量附加参数进行训练,从而完成任务适应,而无需更新整个模型的权重。**这种方法通过引入额外的低秩矩阵来适应新的任务,保持了预训练模型的核心知识,使其更具灵活性和高效性。在大规模语言模型的实际应用中,微调需要耗费巨大
- 在LORA训练中,LORA模型的矩阵的行列是多少
ZhangJiQun&MXP
教学2021AIpython2024大模型以及算力矩阵人工智能深度学习学习机器学习算法
在LORA训练中,LORA模型的矩阵的行列是多少:Wnew=W+αrBAW_{new}=W+\frac{\alpha}{r}BA
- prompt 工程整理(未完、持续更新)
clvsit
LLMprompt人工智能LLM
工作期间会将阅读的论文、一些个人的理解整理到个人的文档中,久而久之就积累了不少“个人”能够看懂的脉络和提纲,于是近几日准备将这部分略显杂乱的内容重新进行梳理。论文部分以我个人的理解对其做了一些分类,并附上一些简短的理解,若读者对其感兴趣,可通过论文名称进行搜索。后续有时间,会持续更新和补充。提示工程(PromptEngineering)关注提示词开发和优化,帮助用户将大语言模型(LargeLang
- 代码随想录算法训练营第六十六天| 图论11
Rachela_z
算法图论
Floyd算法精讲Floyd算法代码很简单,但真正理解起原理还是需要花点功夫,大家在看代码的时候,会发现Floyd的代码很简单,甚至看一眼就背下来了,但我为了讲清楚原理,本篇还是花了大篇幅来讲解。代码随想录if__name__=='__main__':max_int=10005#设置最大路径,因为边最大距离为10^4n,m=map(int,input().split())grid=[[[max_i
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓