- Python库 - transformers
司南锤
PYTHON库python机器学习python开发语言
transformers库是由HuggingFace开发的一个非常流行的Python库,用于自然语言处理(NLP)任务。它提供了大量的预训练模型,这些模型可以用于各种NLP任务,如文本分类、问答、翻译、摘要生成等。以下是关于transformers库的详细介绍:1.主要特点预训练模型:transformers库包含了多种预训练的语言模型,如BERT、GPT、T5、XLNet等。这些模型在大规模文本
- 【NLP-04】tranformers库保姆级使用教程---以BERT模型为例
云天徽上
NLPbert人工智能深度学习自然语言处理机器学习numpy信息可视化
安装要安装一个非常轻量级的Transformers库,您可以执行以下步骤:1、打开终端或命令提示符。2、运行以下命令来安装Transformers库:pipinstalltransformers这将使用pip工具从PythonPackageIndex(PyPI)下载并安装Transformers库。请确保您的计算机上已经安装了pip。然后,您可以在Python代码中导入Transformers库:
- [论文笔记] Cost-Effective Hyperparameter Optimization for Large Language Model Generation 大型语言模型生成推理超参优化
心心喵
论文笔记论文阅读语言模型人工智能
成本效益高的大型语言模型生成推理的超参数优化https://openreview.net/pdf?id=DoGmh8A39OChiWang1,SusanXueqingLiu2,AhmedH.Awadallah11微软研究院,雷德蒙德2史蒂文斯理工学院摘要大型语言模型(LLMs)因其生成能力引发了广泛关注,催生了各种商业应用。使用这些模型的高成本驱使应用构建者在有限的推理预算下最大化生成的价值。本文
- DeepSeek大模型的发展的十问十答
科技互联人生
人工智能AIGCDeepseek
DeepSeek大模型是由杭州深度求索人工智能基础技术研究有限公司开发的一款基于Transformer架构的大型语言模型,具体介绍如下:1.架构基础Transformer架构:DeepSeek大模型基于Transformer架构,该架构由Google在2017年提出,以自注意力机制为核心,能够并行处理输入序列中的每个元素,从而大大提高模型的计算效率。DeepSeek在Transformer架构的基
- C语言学习记录(4)青年歌手大奖赛_评委会打分
舌尖上的五香
C语言
C语言学习记录前言一直自己没有学习做笔记的习惯,所以为了加强自己对知识的深入理解,决定将学习笔记写下来,希望向各位大牛们学习交流!不当之处请斧正!在此感谢!这边就先从学习C语言写起,自己本身对程序语言方面不擅长,所以决定对此从基础开始学习,大牛们对此文可以忽略!学校的OJ上的题青年歌手大奖赛_评委会打分题目描述青年歌手大奖赛中,评委会给参赛选手打分。选手得分规则为去掉一个最高分和一个最低分,然后计
- 【Python】成功解决NameError: name ‘XXX’ is not defined
云天徽上
python运行报错解决记录python开发语言pandas机器学习numpy
【Python】成功解决NameError:name‘XXX’isnotdefined欢迎莅临我的个人主页这里是我深耕Python编程、机器学习和自然语言处理(NLP)领域,并乐于分享知识与经验的小天地!博主简介:我是云天徽上,一名对技术充满热情的探索者。多年的Python编程和机器学习实践,使我深入理解了这些技术的核心原理,并能够在实际项目中灵活应用。尤其是在NLP领域,我积累了丰富的经验,能够
- 深入解析LangChain4j中的ChatLanguageModel API:从基础到高级应用
泰山AI
精品专栏microsoftlangchain4jjavaai
聊天与语言模型|LangChain4j注意本页描述的是低级别的LLMAPI。有关高级LLMAPI,请参见AIServices。支持的所有LLMProviderStreamingTools(sync/streaming)JSONSchemaJSONModeSupportedModalities(Input)ObservabilityLocalDeploymentSupportsNativeImage
- LangChain大模型应用开发:工作流编排
梦丶晓羽
langchainpython自然语言处理人工智能
介绍大家好,博主又来给大家分享知识了,那么今天又给大家分享什么内容呢?今天我要给大家分享的内容是LangChain工作流编排。那么什么是LangChain工作流编排呢?简单来说,LangChain工作流编排就是将多个与自然语言处理相关的组件,像提示模板、大语言模型、各种实用工具等巧妙地组合在一起,形成一个有条理、可执行的流程。LangChain提供了多种方式来实现这种编排,其中很有特色的就是链式调
- 大模型应用层的创业挑战
AGI大模型与大数据研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
大模型应用层的创业挑战关键词:大模型、应用层、创业、挑战、算法、架构、数据、资源、合作、盈利模型1.背景介绍随着计算能力和数据量的指数级增长,大模型(LargeModels)已经成为人工智能领域的关键驱动因素。大模型的应用从语言模型扩展到图像、视频和音频领域,为各行各业带来了颠覆性的创新。然而,构建和部署大模型的成本高昂,对计算资源和数据的需求也日益增加。本文将探讨大模型应用层面的创业挑战,并提供
- 【大模型】数据集构造方式
油泼辣子多加
深度学习人工智能chatgpt
1.Alpaca数据格式Alpaca数据格式最早由StanfordAlpaca项目提出,目的是用来微调大语言模型(LLM),特别是用于InstructionTuning(指令微调)。它基于Self-Instruct方法,即使用更强大的模型(如OpenAI的GPT-3)来自动生成高质量的指令数据,从而让小型模型也能理解和执行指令任务。数据格式示例Alpaca数据集的格式通常是JSON,包含以下几个字
- ChatGPT for Bot在QQ、微信等平台实现直接和deepseek对话的AI聊天程序包!支持DeepSeek、Claude、Ollama等主流模型,提供人物调整,虚拟朋友、语音对话
struggle2025
人工智能chatgpt机器人
一、软件介绍文末提供安装包和源码下载ChatGPTforBot一款支持在QQ、微信等聊天平台直接跟DeepSeek语言模型聊天的程序!真正的AI聊天!支持DeepSeek、Claude、OpenAI、Gemini、ChatGLM、Ollama,人设调教,虚拟朋友、语音对话。它可以让你在聊天平台上对接语言模型,实现和语言模型的直接对话。个人使用总结,连入deepseek后,告诉它专业的知识,然后给人
- AI日报 - 2025年02月16日 - 推特版
訾博ZiBo
AI日报人工智能
今日概览(60秒速览)▎AGI突破|阿里巴巴发布Qwen2.5-VL视觉语言模型,支持多模态交互新模型评测榜性能提升30%▎商业动向|NVIDIABlackwell超级芯片网络研讨会将聚焦生成式AI创新预计推动算力市场增长15%▎政策追踪|印度总统宣布AI国家战略升级,聚焦半导体与算法研发计划未来3年投入50亿美元一、今日热点(HotTopic)1.1阿里巴巴发布Qwen2.5-VL系列视觉语言模
- 基于GPT一键完成数据分析全流程的AI Agent: Streamline Analyst
Wilson_ZheLIN
gpt4aiagentllms数据分析
大型语言模型(LLM)的兴起不仅为获取知识和解决问题开辟了新的可能性,而且催生了一些新型智能系统,例如旨在辅助用户完成特定任务的AICopilot以及旨在自动化和自主执行复杂任务的AIAgent,使得编程、创作等任务变得高效而条理。在数据科学和可视化方面,非常多家AICopilot通过提供智能提示、建议或辅助决策等手段有效减小了用户的工作量。但是很少有app针对不同种类数据的预处理、建模、可视化等
- DeepSeek-R1驱动下一代AIGC安全:全面解析智能内容合规审查技术体系与实战案例
Coderabo
DeepSeekR1模型企业级应用AIGC安全
DeepSeek-R1赋能AIGC内容合规审查:技术实践与案例解析一、AIGC内容合规审查技术架构(此处展开约1500字的技术原理说明,涵盖深度学习模型、规则引擎、多模态检测等核心组件)二、核心实施步骤与代码实现1.文本内容预处理模块importrefromdeepseek_nlpimportTextCleanerdeftext_preprocessing(text):#特殊字符过滤cleaner
- DeepSeek模型实战:从理论到应用的深度探索
CodeJourney.
人工智能算法数据库
一、引言在人工智能快速发展的当下,大型语言模型已成为自然语言处理领域的核心力量。DeepSeek模型作为其中的佼佼者,凭借其先进的架构和强大的性能,吸引了众多开发者和研究人员的关注。本文将深入探讨DeepSeek模型的技术原理,并通过实际案例展示其在不同场景下的应用,为读者提供从理论到实践的全面指导。二、DeepSeek模型技术剖析(一)架构基础DeepSeek模型基于Transformer架构构
- 【有啥问啥】DeepSeek 技术原理详解
有啥问啥
大模型深度学习
DeepSeek技术原理详解DeepSeek是一款具有突破性技术的大型语言模型,其背后的技术原理涵盖了多个方面,以下是对其主要技术原理的详细介绍:架构创新多头潜在注意力机制(MLA)传送门链接:DeepSeekV3中的Multi-HeadLatentAttention(MLA):技术解析与应用DeepSeek引入了多头潜在注意力机制(Multi-headLatentAttention,MLA),这
- 【DeepSeek】DeepSeek 如何应用于政务系统?
深度求索者
政务
DeepSeek作为一款高性能、低成本的AI大模型,近期在政务系统中得到了广泛应用,其技术能力和场景适配性正在推动数字政府的智能化转型。以下从应用场景、技术支撑、实际成效及未来方向等方面进行深度解析:一、核心应用场景智能公文处理政策解读与文件起草:DeepSeek基于自然语言处理(NLP)技术,可自动生成公文初稿,结合政务语境提取关键信息,生成拟办意见。例如,深圳市龙岗区的公文校对时间从人工5分钟
- Decoder-Only、Encoder-Only、Encoder-Decoder 区别
会喘气的粽子丶
nlp人工智能
Decoder-Only、Encoder-Only和Encoder-Decoder是三种常见的神经网络架构,主要用于自然语言处理(NLP)任务。它们在结构和应用上有显著的区别。1.Decoder-Only架构描述:仅包含解码器部分,没有编码器。应用:通常用于生成任务,如语言模型和对话系统。代表模型:GPT(GenerativePre-trainedTransformer)特点:自回归生成:模型通过
- 【AI引领潮流|未来智慧生活】国内机器聊天软件推荐(超全!)and人工智能&智能学习
熔光
人工智能AI软件智能学习生活
1.AI聊天软件概述1.1AI聊天软件的关键技术1.2AI聊天软件的应用1.3AI聊天软件的挑战1.4总结2.智普清言3.文心一言4.讯飞星火5.知元AI6.白马AI7.ChatGPT8.一览AI应用链接9.人工智能10.机器学习↓个人主页:C_GUIQU↑1.AI聊天软件概述AI聊天软件是一种利用自然语言处理(NLP)、自然语言理解(NLU)和机器学习(ML)技术构建的软件,它能够理解用户的自然
- 【带你 langchain 双排系列教程】1. langchian 基本架构与环境配置(siliconFlow Deepseek接入)
夜里慢慢行456
langchain
LangChain是一个用于构建和部署大模型应用的框架,涵盖了从语言模型(LLM)到检索增强生成(RAG)、OpenAI集成以及智能体(Agent)的全套工具链。以下是一个简要的LangChain大模型全套教程,帮助你快速上手。核心内容:LangChain六大模块详解:模型(Models)、提示词(Prompts)、链(Chains)、索引(Indexes)、智能体(Agents)、内存(Memo
- 使用OpenAI LLM与Neo4j数据库进行自然语言交互
bBADAS
neo4j数据库交互python
技术背景介绍在现代数据分析和应用开发中,图数据库以其独特的强大功能越来越受到重视。其中,Neo4j是最受欢迎的图数据库之一。结合自然语言处理(NLP),可以使数据查询变得更加直观和便捷。本篇文章将介绍如何使用OpenAI的语言模型将自然语言问题转换成Cypher查询,并通过Neo4j数据库执行该查询,并给出自然语言的响应。核心原理解析我们的目标是实现一个系统,该系统能够接受自然语言输入,将其转换为
- LLM 参数解析:使用 OpenAI API 在 Python 中的实用指南(含示例)
真智AI
python人工智能chatgpt
当你使用大语言模型(LLM)时,可能会注意到,即使提交相同的请求,多次运行后仍然会得到不同的回应。这是因为LLM具有概率性,它们的输出基于所学到的模式和概率,而不是固定规则。幸运的是,你可以通过调整特定的参数来控制LLM的行为,就像微调收音机的旋钮来调整到想要的电台一样。理解这些参数可以帮助你更好地定制LLM的输出,使其更具可预测性或创造性,具体取决于你的需求。在本文中,我们将探讨多个关键参数,这
- Windows Docker Desktop部署MaxKB详细教程
Roc-xb
docker容器运维MaxKB
MaxKB(MaxKnowledgeBase)是一款基于大语言模型(LLM)和检索增强生成(RAG)技术的开源知识库问答系统,旨在帮助企业、教育机构及研究组织高效管理知识并提供智能问答服务。一、前期准备工作首先,你需要再你的Windows电脑上安装DockerDesktop。本章教程,不介绍如何安装Docker。二、搜索镜像dockersearchmaxkb
- AI 编程工具崛起,程序员的未来是否岌岌可危?
一、AI编程工具的现状AI编程工具的出现与迅猛发展是技术进步的必然结果。这一趋势首先得益于开源社区和代码托管平台提供的丰富代码样本,它们为AI模型的学习提供了充足的素材。其次,编程语言本身的严格语法和结构化特点,使得AI能够高效、精确地理解和生成代码。再者,深度学习技术的突破,尤其是大语言模型在代码理解与生成方面的显著进展,为AI编程提供了坚实的技术基础。最后,随着软件开发需求的不断增加,传统开发
- 【目标检测】多模态航空目标检测:A SIMPLE AERIAL DETECTION BASELINE OF MULTIMODAL LANGUAGE MODELS
慕容紫英问情
目标检测目标检测人工智能计算机视觉
阅读并理解一篇论文:ASIMPLEAERIALDETECTIONBASELINEOFMULTIMODALLANGUAGEMODELS该文首次提出了一种将多模态语言模型应用于航空检测的简单基线方法,名为LMMRotate。贡献:具体而言,首先引入一种归一化方法,将检测输出转换为文本输出,以适配多模态语言模型框架。接着,提出一种评估方法,确保多模态语言模型与传统目标检测模型之间能够进行公平比较。通过微
- 设计模式13:职责链模式
MatthewMao
设计模式设计模式qt职责链模式
系列总链接:《大话设计模式》学习记录_net大话设计-CSDN博客1.概述职责链模式(ChainofResponsibilityPattern)是一种行为设计模式,它允许将请求沿着处理者链传递,直到有一个处理者能够处理该请求。这种模式通过避免发送者和接收者之间的直接耦合,使得多个对象都有机会处理请求,从而增强了系统的灵活性和可扩展性。每个处理者包含对其下一个处理者的引用,如果当前处理者无法处理请求
- Pytorch实现mnist手写数字识别
Zn要学习
python
>-**本文为[365天深度学习训练营]中的学习记录博客**>-**原作者:[K同学啊]**我的环境:语言环境:Python3.8编译器:JupyterLab深度学习环境:torch==1.12.1+cu113torchvision==0.13.1+cu113一、前期准备1.设置GPU如果设备上支持GPU就使用GPU,否则使用CPUimporttorchimporttorch.nnasnnimpo
- 《DeepSeek训练算法:开启高效学习的新大门》
人工智能深度学习
在人工智能的浪潮中,大语言模型的发展日新月异。DeepSeek作为其中的佼佼者,凭借其独特的训练算法和高效的学习能力,吸引了众多目光。今天,就让我们深入探究DeepSeek训练算法的独特之处,以及它是如何保证模型实现高效学习的。一、独特的架构基础DeepSeek以Transformer架构为基石,但并非简单沿用,而是进行了深度创新。Transformer架构的核心是注意力机制,这让模型在处理序列数
- 使用Python中的LangChain库优化消息长度:从聊天历史到模型性能的全面指南
m0_57781768
pythonlangchaineasyui
使用Python中的LangChain库优化消息长度:从聊天历史到模型性能的全面指南在现代人工智能应用中,大语言模型(LLM)扮演着越来越重要的角色,尤其是在对话系统、智能助理和其他自然语言处理任务中。然而,所有的模型都有一个有限的上下文窗口,意味着它们可以处理的输入令牌(tokens)数量是有限的。当我们需要处理较长的对话历史或复杂的任务链时,如何管理传递给模型的消息长度变得至关重要。在这篇文章
- 【LLM】大模型基础--大规模预训练语言模型的开源教程笔记
Langchain
笔记人工智能langchainllama大模型产品经理大模型基础
1.引言本文以DataWhale大模型开源教程为学习路线,进行一整个大模型的入门操作什么是语言模型语言模型是一种对词元序列(token)的概率分布,可以用于评估文本序列的合理性并生成新的文本。从生成文本的方式来看,LM(languagemodle)可以简单的分为:自回归模型非自回归模型特点逐字生成文本,每个词的生成都依赖于上文,关联性好一次性生成整个文本序列,不捕捉上文信息优点内容质量高生成速度快
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数