简单学习过网络爬虫,只是之前都是照着书上做并发,大概能理解,却还是无法自己用到自己项目中,这里自己研究实现一个网页嗅探HTML5播放控件中基于m3u8协议ts格式视频资源的项目,并未考虑过复杂情况,毕竟只是练练手.
# coding=utf-8
import asyncio
import multiprocessing
import os
import re
import time
from math import floor
from multiprocessing import Manager
import aiohttp
import requests
from lxml import html
import threading
from src.my_lib import retry
from src.my_lib import time_statistics
class M3U8Download:
_path = "./resource\\" # 本地文件路径
_url_seed = None # 资源所在链接前缀
_target_url = {} # 资源任务目标字典
_mode = ""
_headers = {"User-agent": "Mozilla/5.0"} # 浏览器代理
_target_num = 100
def __init__(self):
self._ml = Manager().list() # 进程通信列表
if not os.path.exists(self._path): # 检测本地目录存在否
os.makedirs(self._path)
exec_str = r'chcp 65001'
os.system(exec_str) # 先切换utf-8输出,防止控制台乱码
def sniffing(self, url):
self._url = url
print("开始嗅探...")
try:
r = requests.get(self._url) # 访问嗅探网址,获取网页信息
except:
print("嗅探失败,网址不正确")
os.system("pause")
else:
tree = html.fromstring(r.content)
try:
source_url = tree.xpath('//video//source/@src')[0] # 嗅探资源控制文件链接,这里只针对一个资源控制文件
# self._url_seed = re.split("/\w+\.m3u8", source_url)[0] # 从资源控制文件链接解析域名
except:
print("嗅探失败,未发现资源")
os.system("pause")
else:
self.analysis(source_url)
def analysis(self, source_url):
try:
self._url_seed = re.split("/\w+\.m3u8", source_url)[0] # 从资源控制文件链接解析域名
with requests.get(source_url) as r: # 访问资源控制文件,获得资源信息
src = re.split("\n*#.+\n", r.text) # 解析资源信息
for sub_src in src: # 将资源地址储存到任务字典
if sub_src:
self._target_url[sub_src] = self._url_seed + "/" + sub_src
except Exception as e:
print("资源无法成功解析", e)
os.system("pause")
else:
self._target_num = len(self._target_url)
print("sniffing success!!!,found", self._target_num, "url.")
self._mode = input(
"1:-> 单进程(Low B)\n2:-> 多进程+多线程(网速开始biubiu飞起!)\n3:-> 多进程+协程(最先进的并发!!!)\n")
if self._mode == "1":
for path, url in self._target_url.items():
self._download(path, url)
elif self._mode == "2" or self._mode == "3":
self._multiprocessing()
def _multiprocessing(self, processing_num=4): # 多进程,多线程
target_list = {} # 进程任务字典,储存每个进程分配的任务
pool = multiprocessing.Pool(processes=processing_num) # 开启进程池
i = 0 # 任务分配标识
for path, url in self._target_url.items(): # 分配进程任务
target_list[path] = url
i += 1
if i % 10 == 0 or i == len(self._target_url): # 每个进程分配十个任务
if self._mode == "2":
pool.apply_async(self._sub_multithreading, kwds=target_list) # 使用多线程驱动方法
else:
pool.apply_async(self._sub_coroutine, kwds=target_list) # 使用协程驱动方法
target_list = {}
pool.close() # join函数等待所有子进程结束
pool.join() # 调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool
while True:
if self._judge_over():
self._combine()
break
def _sub_multithreading(self, **kwargs):
for path, url in kwargs.items(): # 根据进程任务开启线程
t = threading.Thread(target=self._download, args=(path, url,))
t.start()
@retry()
def _download(self, path, url): # 同步下载方法
with requests.get(url, headers=self._headers) as r:
if r.status_code == 200:
with open(self._path + path, "wb")as file:
file.write(r.content)
self._ml.append(0) # 每成功一个就往进程通信列表增加一个值
percent = '%.2f' % (len(self._ml) / self._target_num * 100)
print(len(self._ml), ": ", path, "->OK", "\tcomplete:", percent, "%") # 显示下载进度
else:
print(path, r.status_code, r.reason)
def _sub_coroutine(self, **kwargs):
tasks = []
for path, url in kwargs.items(): # 根据进程任务创建协程任务列表
tasks.append(asyncio.ensure_future(self._async_download(path, url)))
loop = asyncio.get_event_loop() # 创建异步事件循环
loop.run_until_complete(asyncio.wait(tasks)) # 注册任务列表
async def _async_download(self, path, url): # 异步下载方法
async with aiohttp.ClientSession() as session:
async with session.get(url, headers=self._headers) as resp:
try:
assert resp.status == 200, "E" # 断言状态码为200,否则抛异常,触发重试装饰器
with open(self._path + path, "wb")as file:
file.write(await resp.read())
except Exception as e:
print(e)
else:
self._ml.append(0) # 每成功一个就往进程通信列表增加一个值
percent = '%.2f' % (len(self._ml) / self._target_num * 100)
print(len(self._ml), ": ", path, "->OK", "\tcomplete:", percent, "%") # 显示下载进度
def _combine(self): # 组合资源方法
try:
print("开始组合资源...")
identification = str(floor(time.time()))
exec_str = r'copy /b "' + self._path + r'*.ts" "' + self._path + 'video' + identification + '.mp4"'
os.system(exec_str) # 使用cmd命令将资源整合
exec_str = r'del "' + self._path + r'*.ts"'
os.system(exec_str) # 删除原来的文件
except:
print("资源组合失败")
else:
print("资源组合成功!")
def _judge_over(self): # 判断是否全部下载完成
if len(self._ml) == len(self._target_url):
return True
return False
@time_statistics
def app():
multiprocessing.freeze_support()
url = input("输入嗅探网址:\n")
m3u8 = M3U8Download()
m3u8.sniffing(url)
# m3u8.analysis(url)
if __name__ == "__main__":
app()
这里是两个装饰器的实现:
import time
def time_statistics(fun):
def function_timer(*args, **kwargs):
t0 = time.time()
result = fun(*args, **kwargs)
t1 = time.time()
print("Total time running %s: %s seconds" % (fun.__name__, str(t1 - t0)))
return result
return function_timer
def retry(retries=3):
def _retry(fun):
def wrapper(*args, **kwargs):
for _ in range(retries):
try:
return fun(*args, **kwargs)
except Exception as e:
print("@", fun.__name__, "->", e)
return wrapper
return _retry
使用PyInstaller -F download.py
将程序打包成单个可执行文件.
这里需要注意一下,因为程序含有多进程,需要在执行前加一句multiprocessing.freeze_support()
,不然程序会反复执行多进程前的功能.
协程在Python3.5进化到了async await
版本,用 async 标记异步方法,在异步方法里对耗时操作使用await标记.这里使用了一个进程驱动协程的方法,在进程池创建多个协程任务,使用asyncio.get_event_loop()
创建协程事件循环,使用run_until_complete()
注册协程任务,asyncio.wait()
方法接收一个任务列表进行协程注册.
装饰器源于闭包原理,这里使用了两种装饰器.
()
的,关于()
:程序会使用CMD命令来将下载的ts文件合并.
因为CMD默认使用GB2312编码,调用os.system()
需要先切换成通用的UTF-8输出,否则系统信息会乱码.
而且使用cmd命令时参数最好加双引号,以避免特殊符号报错.