用pycaffe训练图像

废话不多说,本文在python下调用caffe来训练,由于python下图片转lmdb比较复杂,所以就直接使用了windows下的接口。如果不会搭建caffe包的,移步这https://blog.csdn.net/zb1165048017/article/details/52980102

数据集是一个二分类的数据集,主要是人脸和非人脸,链接:https://pan.baidu.com/s/1WCErudFafJjP2V1edpV5_g 密码:q85k

要跑网络,我们要先构建自己的网络,由于数据集图片是60*60,所以我们没必要跑太复杂的网络,所以我写了个比较简单的网络,最后准确率能达到98%

import caffe
from caffe import layers as L,params as P
#定义你的网络层
def myLayer(lmdb,batch_size,is_deploy):
    n=caffe.NetSpec()
#这里的source填入你的数据源lmdb
    n.data,n.label=L.Data(batch_size=batch_size,backend=P.Data.LMDB,source=lmdb,
                          transform_param=dict(scale=1./255),ntop=2)
    n.conv1 = L.Convolution(n.data, kernel_size=3,stride=2, num_output=20, 
                            weight_filler=dict(type='xavier'))
    #特征图变为 30*30 
    n.relu1=L.ReLU(n.conv1,in_place=True)
    n.conv2 = L.Convolution(n.relu1, kernel_size=3,stride=2, num_output=60, 
                            weight_filler=dict(type='xavier'))
    #15*15
    n.relu2=L.ReLU(n.conv2,in_place=True)
    n.conv3 = L.Convolution(n.relu1, kernel_size=3,stride=2, num_output=90, 
                            weight_filler=dict(type='xavier'))
    n.relu3=L.ReLU(n.conv3,in_place=True)
    n.score=L.InnerProduct(n.relu3,num_output=2,weight_filler=dict(type='xavier'))
    n.loss=L.SoftmaxWithLoss(n.score,n.label)
    return n.to_proto()
#上面的仅仅是定义,下面的是把网络写入本地的prototxt文件中
def writeLayer():
    with open('train.prototxt', 'w') as f:
        f.write(str(myLayer('train_lmdb', 100,0)))
    with open('test.prototxt', 'w') as f:
        f.write(str(myLayer('test_lmdb', 10,0)))

写完网络层,就是写solver,solver有两种方法来定义,我一开始用的第一种writeSolver(),可老是报错,报错的原因貌似是pycaffe识别不了“snapshot_prefix”这个属性,于是我后来采用了第二张写法writeSolver_2()

def writeSolver():
    solverprototxt=tools.CaffeSolver(trainnet_prototxt_path='train.prototxt',
                                    testnet_prototxt_path='test.prototxt')
#在python下,你可以没必要每个都去定义,它会自己初始化
    solverprototxt.sp['base_lr']='0.001'
    solverprototxt.sp['weight_decay']='0.001'
    solverprototxt.sp['gamma']='0.0001'
    solverprototxt.sp['power']='0.001'
    solverprototxt.sp['display']='1000'
    solverprototxt.sp['test_iter']='100'
    solverprototxt.sp['max_iter']='5000'
    solverprototxt.sp['lr_policy']="step"
    solverprototxt.sp['snapshot']="1000"
#下面这个snapshot_prefix我把他去掉就能正常跑,加上就一直报错
#    solverprototxt.sp['snapshot_prefix']="rr"
    solverprototxt.sp['display'] = "1"
    solverprototxt.sp['max_iter'] = "1000"
    solverprototxt.write('solver.prototxt')

from caffe.proto import caffe_pb2
def writeSolver_2():
    s=caffe_pb2.SolverParameter()
    s.train_net = 'train.prototxt'     # 训练配置文件
    s.test_net.append('test.prototxt')  # 测试配置文件
    s.test_interval = 200                   # 测试间隔
    s.test_iter.append(1)                 # 测试迭代次数
    s.max_iter = 78200                      # 最大迭代次数
    s.base_lr = 0.001                       # 基础学习率
    s.momentum = 0.9                        # momentum系数
    s.weight_decay = 5e-4                   # 权值衰减系数
    s.lr_policy = 'step'                    # 学习率衰减方法
    s.stepsize=26067                        # 此值仅对step方法有效
    s.gamma = 0.1                           # 学习率衰减指数
    s.display = 782                         # 屏幕日志显示间隔
    s.snapshot = 2000
    s.snapshot_prefix = 'shapshot'
    s.type = "SGD"                         # 优化算法
    s.solver_mode = caffe_pb2.SolverParameter.GPU
    with open("solver.prototxt","w") as f:
        f.write(str(s))
    

现在如果分别调用上面两个函数,就可以在本地生成三个文件(1个solver,另外两个分别为训练阶段和测试阶段的),如图

用pycaffe训练图像_第1张图片

好,一切就绪,下面就是跑网络了,如果单纯地想让网络跑起来的话,下面两句就行了,step就是让caffe跑的步数

solver=caffe.get_solver('solver.prototxt')
solver.step(200) 

下面我给的训练包括输出准确率以及可视化

def train_layer():
    caffe.set_device(0)
    caffe.set_mode_gpu()
    solver=caffe.get_solver('solver.prototxt')
    niter = 3000
    x_label=[0]
    y_acc=[0]
    acc=0
    for it in range(niter):
        solver.step(1)  # SGD by Caffe   
        solver.test_nets[0].forward()    
#a为最后的score,由于测试批次是10,所以这个a是个1*10的数组,对应的b也是一个1*10的数组
        a=solver.test_nets[0].blobs['score'].data.argmax(1)
        b=solver.test_nets[0].blobs['label'].data   
        for j in range(10):
            if(a[j]==b[j]):
                acc+=1                 
        if(it%40==0):
            print '第',it,'次迭代,准确率为:',Decimal(float(acc)/float(10*(it+1))).quantize(Decimal('0.000'))
            x_label.append(it)
            y_acc.append(Decimal(float(acc)/float(10*(it+1))).quantize(Decimal('0.000')))
    plt.plot(x_label, y_acc)
    plt.show()

ok,下面上一段完整的代码

import caffe
from caffe import layers as L,params as P
import sys
sys.path.append('F:/caffe/caffe-master/examples/pycaffe')
import tools
def writeSolver():
    solverprototxt=tools.CaffeSolver(trainnet_prototxt_path='train.prototxt',
                                    testnet_prototxt_path='test.prototxt')
#    solverprototxt.sp['base_lr']='0.001'
#    solverprototxt.sp['weight_decay']='0.001'
#    solverprototxt.sp['gamma']='0.0001'
#    solverprototxt.sp['power']='0.001'
#    solverprototxt.sp['display']='1000'
#    solverprototxt.sp['test_iter']='100'
#    solverprototxt.sp['max_iter']='5000'
#    solverprototxt.sp['lr_policy']="step"
#    solverprototxt.sp['snapshot']="1000"
##    solverprototxt.sp['snapshot_prefix']="rr"
#    solverprototxt.sp['display'] = "1"
#    solverprototxt.sp['max_iter'] = "1000"
    solverprototxt.write('solver.prototxt')

from caffe.proto import caffe_pb2
def writeSolver_2():
    s=caffe_pb2.SolverParameter()
    s.train_net = 'train.prototxt'     # 训练配置文件
    s.test_net.append('test.prototxt')  # 测试配置文件
    s.test_interval = 200                   # 测试间隔
    s.test_iter.append(1)                 # 测试迭代次数
    s.max_iter = 78200                      # 最大迭代次数
    s.base_lr = 0.001                       # 基础学习率
    s.momentum = 0.9                        # momentum系数
    s.weight_decay = 5e-4                   # 权值衰减系数
    s.lr_policy = 'step'                    # 学习率衰减方法
    s.stepsize=26067                        # 此值仅对step方法有效
    s.gamma = 0.1                           # 学习率衰减指数
    s.display = 782                         # 屏幕日志显示间隔
    s.snapshot = 2000
    s.snapshot_prefix = 'shapshot'
    s.type = "SGD"                         # 优化算法
    s.solver_mode = caffe_pb2.SolverParameter.GPU
    with open("solver.prototxt","w") as f:
        f.write(str(s))
    




#original img is 60*60
def myLayer(lmdb,batch_size,is_deploy):
    n=caffe.NetSpec()
    n.data,n.label=L.Data(batch_size=batch_size,backend=P.Data.LMDB,source=lmdb,
                          transform_param=dict(scale=1./255),ntop=2)
    n.conv1 = L.Convolution(n.data, kernel_size=3,stride=2, num_output=20, 
                            weight_filler=dict(type='xavier'))
    #特征图变为 30*30 
    n.relu1=L.ReLU(n.conv1,in_place=True)
    n.conv2 = L.Convolution(n.relu1, kernel_size=3,stride=2, num_output=60, 
                            weight_filler=dict(type='xavier'))
    #15*15
    n.relu2=L.ReLU(n.conv2,in_place=True)
    n.conv3 = L.Convolution(n.relu1, kernel_size=3,stride=2, num_output=90, 
                            weight_filler=dict(type='xavier'))
    n.relu3=L.ReLU(n.conv3,in_place=True)
    n.score=L.InnerProduct(n.relu3,num_output=2,weight_filler=dict(type='xavier'))
    n.loss=L.SoftmaxWithLoss(n.score,n.label)
    return n.to_proto()

def writeLayer():
    with open('train.prototxt', 'w') as f:
        f.write(str(myLayer('train_lmdb', 100,0)))
    with open('test.prototxt', 'w') as f:
        f.write(str(myLayer('test_lmdb', 10,0)))
import matplotlib.pyplot as plt
import numpy as np
from decimal import Decimal
def train_layer():
    caffe.set_device(0)
    caffe.set_mode_gpu()
    solver=caffe.get_solver('F:/python_project/8_2/solver.prototxt')
    niter = 3000
    x_label=[0]
    y_acc=[0]
    acc=0
    for it in range(niter):
        solver.step(1)  # SGD by Caffe   
        solver.test_nets[0].forward()    
        a=solver.test_nets[0].blobs['score'].data.argmax(1)
        b=solver.test_nets[0].blobs['label'].data   
        for j in range(10):
            if(a[j]==b[j]):
                acc+=1                 
        if(it%40==0):
            print '第',it,'次迭代,准确率为:',Decimal(float(acc)/float(10*(it+1))).quantize(Decimal('0.000'))
            x_label.append(it)
            y_acc.append(Decimal(float(acc)/float(10*(it+1))).quantize(Decimal('0.000')))
    plt.plot(x_label, y_acc)
    plt.show()
     

writeSolver()
writeLayer()
#solver=caffe.get_solver('F:/python_project/8_2/solver.prototxt')
#solver.step(200) 
train_layer()

下面是我的结果

用pycaffe训练图像_第2张图片

你可能感兴趣的:(caffe)