【STM32】RTC实时时钟概述、寄存器、库函数(RTC一般步骤)

STM32F1xx官方资料:

《STM32中文参考手册V10》-第16章  实时时钟(RTC)

 

RTC实时时钟

RTC实时时钟简介

实时时钟是一个独立的定时器。RTC模块拥有一组连续计数的计数器,在相应软件配置下,可提供时钟日历的功能。修改计数器的值可以重新设置系统当前的时间和日期。 RTC模块和时钟配置系统(RCC_BDCR寄存器)处于后备区域,即在系统复位或从待机模式唤醒后,RTC的设置和时间维持不变。 

BKP备份寄存器简介

备份寄存器是42个16位的寄存器,可用来存储84个字节的用户应用程序数据。他们处在备份域里,当Vdd电源被切断,他们仍然由Vbat维持供电。当系统在待机模式下被唤醒,或系统复位或电源复位时,他们也不会被复位。

此外,BKP控制寄存器用来管理侵入检测和RTC校准功能。在本文中,使用备份寄存器来存储RTC的相关信息(标记时钟是否已经经过了配置)。

复位后,对备份寄存器和RTC的访问被禁止,并且备份域被保护以防止可能存在的意外的写操作。执行以下操作可以使能对备份寄存器和RTC的访问。

  • 通过设置寄存器RCC_APB1ENR的PWREN和BKPEN位来打开电源和后备接口的时钟;
  • 电源控制寄存器(PWR_CR)的DBP位来使能对后备寄存器和RTC的访问。

RTC实时时钟的主要特征

  • 可编程的预分频系数:分频系数最高为220;
  • 32位的可编程计数器,可用于较长时间段的测量;
  • 2个分离的时钟:用于APB1接口的PCLK1和RTC时钟(RTC时钟的频率必须小于PCLK1时钟频率的四分之一以上);
  • 可以选择以下三种RTC的时钟源:
  1. HSE时钟除以128;
  2. LSE振荡器时钟;
  3. LSI振荡器时钟;
  • 2个独立的复位类型:
  1. APB1接口由系统复位;
  2. RTC核心(预分频器、闹钟、计数器和分频器)只能由后备域复位;
  • 3个专门的可屏蔽中断:
  1. 闹钟中断,用来产生一个软件可编程的闹钟中断;
  2. 秒中断,用来产生一个可编程的周期性中断信号(最长可达1秒);
  3. 溢出中断,指示内部可编程计数器溢出并回转为0的状态。

 

RTC工作原理

RTC工作原理框图

【STM32】RTC实时时钟概述、寄存器、库函数(RTC一般步骤)_第1张图片

由工作框图可以看出,RTC由两部分组成:

  • APB1接口:用来和APB1总线相连。通过APB1接口可以访问RTC的相关寄存器(预分频值,计数器值,闹钟值)
  • RTC核心:由一组可编程计数器组成,分两个主要模块:
  1. RTC预分频模块,它可以编程产生最长1秒的RTC时间基TR_CLK。如果设置了秒中断允许位,可以产生秒中断;
  2. 32位的可编程计数器,可被初始化为当前时间。系统时间按TR_CLK周期累加并与存储在RTC_ALR寄存器中的可编程时间相比,当匹配时候如果设置了闹钟中断允许位,可以产生闹钟中断;如果溢出,可以产生溢出中断。

复位过程

  • 除了RTC_PRL、RTC_ALR、RTC_CNT和RTC_DIV寄存器外,所有的系统寄存器都由系统复位或电源复位进行异步复位。
  • RTC_PRL、RTC_ALR、RTC_CNT和RTC_DIV寄存器仅能通过备份域复位信号复位。

读RTC寄存器

RTC内核完全独立于APB1接口,软件通过APB1接口对RTC相关寄存器访问。但是相关寄存器只在RTC APB1时钟进行重新同步的RTC时钟的上升沿被更新。所以软件必须先等待寄存器同步标志位(RTC_CRL的RSF位)被硬件置1才读。

这意味着,如果APB1接口曾经被关闭,而读操作又是在刚刚重新开启APB1之后,则在第一次的内部寄存器更新之前,从APB1上读出的RTC寄存器数值可能被破坏了(通常读到0)。简单地讲,在APB1接口被禁止(复位、无时钟或断电)的情况下,RTC核仍保持运行状态。接着,重新打开APB1接口,此时必须等待RTC_CRL寄存器中的RSF位(寄存器同步标志)被硬件置1,同步之后,读RTC寄存器的值才不会有误。

因此,若在读取RTC寄存器时,RTC的APB1接口曾经处于禁止状态,则软件首先必须等待RTC_CRL寄存器的RSF位被硬件置1。

写RTC寄存器

必须设置RTC_CRL寄存器中的CNF位,使RTC进入配置模式后,才能写入RTC_PRL、RTC_CNT、RTC_ALR寄存器。

另外,对RTC任何寄存器的写操作,都必须在前一次写操作结束后进行。可以通过查询RTC_CR寄存器中的RTOFF状态位,判断RTC寄存器是否处于更新中。仅当RTOFF状态位是1时,才可以写入RTC寄存器。

 

RTC相关配置寄存器

RTC控制寄存器高位(RTC_CRH)

【STM32】RTC实时时钟概述、寄存器、库函数(RTC一般步骤)_第2张图片

作用:配置3个专门的可屏蔽中断(溢出中断、闹钟中断、秒中断)使能。

RTC控制寄存器低位(RTC_CRL)

【STM32】RTC实时时钟概述、寄存器、库函数(RTC一般步骤)_第3张图片

作用:RTC操作是否完成判断、配置模式判断、寄存器同步判断、3个中断的标志位。

这个寄存器尤其重要(尤其是位5、位4、位3):

  • 写任何寄存器之前,必须判断上一次写操作已经结束,也就是判断RTOFF位是否置1;
  • 写CNT、ALR、PRL寄存器,必须先配置CNF位进入配置模式,修改完之后,设置CNF位为0退出配置模式;
  • 读任何寄存器,必须先判断RSF位,确定已经同步。

RTC预分频装载寄存器(RTC_PRLH、RTC_PRLL)

【STM32】RTC实时时钟概述、寄存器、库函数(RTC一般步骤)_第4张图片

作用:配置RTC预分频装载值,这个值是20bit长度。

根据这个寄存器的值可以确定,TR_CLK和RTCCLK之间的关系公式:

fTR_CLK=fRTCCLK/(PRL+1)

如果输入时钟频率是32.768kHz(fRTCCLK,也就是以LSE作为时钟源),这个寄存器中写入7FFFh(32767)可获得周期为1秒钟的信号。

RTC预分频器余数寄存器(RTC_DIVH、RTC_DIVL)

【STM32】RTC实时时钟概述、寄存器、库函数(RTC一般步骤)_第5张图片

作用:获得预分频计数器的当前值,也就是从RTC预分频装载寄存器倒数到0之间的一个值(以RTCCLK为时钟)。

RTC计数器寄存器(RTC_CNTH、RTC_CNTL)

【STM32】RTC实时时钟概述、寄存器、库函数(RTC一般步骤)_第6张图片

作用:存放计数器内的计数值(以TR_CLK为时钟)。

注意:由于RTC预分频器余数寄存器以RTCCLK为时钟,而RTC计数器寄存器以TR_CLK为时钟,而RTCCLK的时钟通常远远大于TR_CLK,所以利用RTC预分频器余数寄存器可以获得更准确的控制。比如,RTC计数器寄存器存储当前时间,精确到秒;但是利用由于RTC预分频器余数寄存器,可以在RTC预分频装载寄存器倒数到0的平均数处停下,从而达到0.5秒的更精确时间。

RTC闹钟寄存器(RTC_ALRH、RTC_ALRL)

【STM32】RTC实时时钟概述、寄存器、库函数(RTC一般步骤)_第7张图片

作用:当RTC计数器寄存器的值与RTC闹钟寄存器的值相等的时候,触发一个闹钟事件,产生一个闹钟中断。

 

读写RTC寄存器的步骤

读RTC寄存器

  • 查询RSF位(寄存器同步标志位),直至RSF的值变成1;
  • 对一个或多个RTC寄存器进行读操作。

写RTC寄存器

  • 查询RTOFF位(RTC操作关闭位),直到RTOFF的值变为1 ;
  • 置CNF位(配置标志位)值为1,进入配置模式(仅仅PRL、CNT、ALR寄存器);
  • 对一个RTC寄存器进行写操作;
  • 清除CNF标志位,退出配置模式(仅仅PRL、CNT、ALR寄存器);
  • 查询RTOFF,直至RTOFF位变为1以确认写操作已经完成。

也就是说:对寄存器的写操作,无论是设置中断使能等等,每操作一次就需要查询一次RTOFF位。而对于PRL、CNT、ALR寄存器,还需要进入配置模式,这个就没有必要每操作一次就退出配置模式,可以等都配置完成了再退出。

 

RTC相关配置库函数

  • 2个时钟源操作函数
void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource);
void RCC_RTCCLKCmd(FunctionalState NewState);

作用:确定RTC的时钟源,使能RTC时钟(通常选用LSE时钟源)。

  • 3个参数配置函数
void RTC_SetCounter(uint32_t CounterValue);
void RTC_SetPrescaler(uint32_t PrescalerValue);
void RTC_SetAlarm(uint32_t AlarmValue);

作用:配置预分频装载寄存器的值、计数器的值、闹钟配置。

  • 1个中断配置函数
void RTC_ITConfig(uint16_t RTC_IT, FunctionalState NewState);

作用:配置RTC中断的选择和使能。

  • 2个配置模式函数
void RTC_EnterConfigMode(void);
void RTC_ExitConfigMode(void);

作用:前者允许RTC配置,后者退出配置模式。

  • 2个同步函数
void RTC_WaitForLastTask(void);
void RTC_WaitForSynchro(void);

作用:前者等待上次操作完成(CRL寄存器的RTOFF位),后者等待时钟同步(CRL寄存器的RSF位)。

  • 4个状态位函数
FlagStatus RTC_GetFlagStatus(uint16_t RTC_FLAG);
void RTC_ClearFlag(uint16_t RTC_FLAG);
ITStatus RTC_GetITStatus(uint16_t RTC_IT);
void RTC_ClearITPendingBit(uint16_t RTC_IT);

作用:前两者获取(或清除)状态标志位,后两者为获取(或清除)中断状态标志位。

  • 其他的相关函数
void PWR_BackupAccessCmd(FunctionalState NewState);
void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState);
void RCC_LSEConfig(uint8_t RCC_LSE);

作用:第一个函数使能BKP后备区域访问使能,第二个函数使能PWR和BKP时钟,第三个函数开启LSE时钟(这里为什么使用这几个函数?是在上文:BKP备份寄存器简介中讲到)。

void BKP_WriteBackupRegister(uint16_t BKP_DR, uint16_t Data);
uint16_t BKP_ReadBackupRegister(uint16_t BKP_DR);

作用:上面的PWR_BackupAccessCmd()函数使能BKP后备区域使能之后,就可以通过这两个函数来读BKP的寄存器,写BKP的寄存器。

 

RTC一般步骤

  • 使能PWR和BKP时钟。调用函数:RCC_APB1PeriphClockCmd();
  • 使能后备寄存器访问。调用函数:PWR_BackupAccessCmd();
  • 配置RTC时钟源,使能RTC时钟。调用函数:RCC_RTCCLKConfig();RCC_RTCCLKCmd();
  • 如果使用LSE,要打开LSE:RCC_LSEConfig(RCC_LSE_ON);
  • 设置RTC预分频系数。调用函数:RTC_SetPrescaler();
  • 设置时间。调用函数:RTC_SetCounter();
  • 开启相关中断(如果需要)。调用函数:RTC_ITConfig();
  • 编写中断服务函数。调用函数:RTC_IRQHandler();
  • 部分操作要等待写操作完成和同步。调用函数:RTC_WaitForLastTask();RTC_WaitForSynchro()。

下面按照这个一般步骤来进行一个简单的RTC程序:

//时间结构体
typedef struct 
{
	vu8 hour;
	vu8 min;
	vu8 sec;			
	//公历日月年周
	vu16 w_year;
	vu8  w_month;
	vu8  w_date;
	vu8  week;		 
}_calendar_obj;	
_calendar_obj calendar;//时钟结构体 
 
static void RTC_NVIC_Config(void)
{	
    NVIC_InitTypeDef NVIC_InitStructure;
	NVIC_InitStructure.NVIC_IRQChannel = RTC_IRQn;		//RTC全局中断
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;	//先占优先级1位,从优先级3位
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;	//先占优先级0位,从优先级4位
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;		//使能该通道中断
	NVIC_Init(&NVIC_InitStructure);		//根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器
}

//实时时钟配置
//初始化RTC时钟,同时检测时钟是否工作正常
//BKP->DR1用于保存是否第一次配置的设置
//返回0:正常
//其他:错误代码

u8 RTC_Init(void)
{
	//检查是不是第一次配置时钟
	u8 temp=0;
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE);	//使能PWR和BKP外设时钟   
	PWR_BackupAccessCmd(ENABLE);	//使能后备寄存器访问  
	
	if (BKP_ReadBackupRegister(BKP_DR1) != 0x5050)		//从指定的后备寄存器中读出数据:读出了与写入的指定数据不相乎
		{	 			
		BKP_DeInit();	//复位备份区域 	
			
		RCC_LSEConfig(RCC_LSE_ON);	//设置外部低速晶振(LSE),使用外设低速晶振
		while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) == RESET&&temp<250)	//检查指定的RCC标志位设置与否,等待低速晶振就绪
			{
			temp++;
			delay_ms(10);
			}
		if(temp>=250)return 1;//初始化时钟失败,晶振有问题	    
			
		RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);		//设置RTC时钟(RTCCLK),选择LSE作为RTC时钟    
		RCC_RTCCLKCmd(ENABLE);	//使能RTC时钟  
			
		RTC_WaitForLastTask();	//等待最近一次对RTC寄存器的写操作完成
		RTC_WaitForSynchro();		//等待RTC寄存器同步  
		RTC_ITConfig(RTC_IT_SEC, ENABLE);		//使能RTC秒中断
		RTC_WaitForLastTask();	//等待最近一次对RTC寄存器的写操作完成
			
		RTC_EnterConfigMode();/// 允许配置	
		RTC_SetPrescaler(32767); //设置RTC预分频的值
		RTC_WaitForLastTask();	//等待最近一次对RTC寄存器的写操作完成
			
		RTC_Set(2015,1,14,17,42,55);  //设置时间	
		RTC_ExitConfigMode(); //退出配置模式  
			
		BKP_WriteBackupRegister(BKP_DR1, 0X5050);	//向指定的后备寄存器中写入用户程序数据
		}
	else//系统继续计时
		{
		RTC_WaitForLastTask();	//等待最近一次对RTC寄存器的写操作完成
		RTC_ITConfig(RTC_IT_SEC, ENABLE);	//使能RTC秒中断
		RTC_WaitForLastTask();	//等待最近一次对RTC寄存器的写操作完成
		}
		
	RTC_NVIC_Config();//RCT中断分组设置		    				     
	RTC_Get();//更新时间	
	return 0; //ok

}		 				    
//RTC时钟中断
//每秒触发一次  
//extern u16 tcnt; 
void RTC_IRQHandler(void)
{		 
	if (RTC_GetITStatus(RTC_IT_SEC) != RESET)//秒钟中断
	{							
		RTC_Get();//更新时间   
 	}
	if(RTC_GetITStatus(RTC_IT_ALR)!= RESET)//闹钟中断
	{
		RTC_ClearITPendingBit(RTC_IT_ALR);		//清闹钟中断	  	
	  RTC_Get();				//更新时间   
  	printf("Alarm Time:%d-%d-%d %d:%d:%d\n",calendar.w_year,calendar.w_month,calendar.w_date,calendar.hour,calendar.min,calendar.sec);//输出闹铃时间	
		
  	} 				  								 
	RTC_ClearITPendingBit(RTC_IT_SEC|RTC_IT_OW);		//清闹钟中断
	RTC_WaitForLastTask();	  	    						 	   	 
}
//判断是否是闰年函数
//月份   1  2  3  4  5  6  7  8  9  10 11 12
//闰年   31 29 31 30 31 30 31 31 30 31 30 31
//非闰年 31 28 31 30 31 30 31 31 30 31 30 31
//输入:年份
//输出:该年份是不是闰年.1,是.0,不是
u8 Is_Leap_Year(u16 year)
{			  
	if(year%4==0) //必须能被4整除
	{ 
		if(year%100==0) 
		{ 
			if(year%400==0)return 1;//如果以00结尾,还要能被400整除 	   
			else return 0;   
		}else return 1;   
	}else return 0;	
}	 			   
//设置时钟
//把输入的时钟转换为秒钟
//以1970年1月1日为基准
//1970~2099年为合法年份
//返回值:0,成功;其他:错误代码.
//月份数据表											 
u8 const table_week[12]={0,3,3,6,1,4,6,2,5,0,3,5}; //月修正数据表	  
//平年的月份日期表
const u8 mon_table[12]={31,28,31,30,31,30,31,31,30,31,30,31};
u8 RTC_Set(u16 syear,u8 smon,u8 sday,u8 hour,u8 min,u8 sec)
{
	u16 t;
	u32 seccount=0;
	if(syear<1970||syear>2099)return 1;	   
	for(t=1970;t2099)return 1;	   
	for(t=1970;t=365)
		{				 
			if(Is_Leap_Year(temp1))//是闰年
			{
				if(temp>=366)temp-=366;//闰年的秒钟数
				else {temp1++;break;}  
			}
			else temp-=365;	  //平年 
			temp1++;  
		}   
		calendar.w_year=temp1;//得到年份
		temp1=0;
		while(temp>=28)//超过了一个月
		{
			if(Is_Leap_Year(calendar.w_year)&&temp1==1)//当年是不是闰年/2月份
			{
				if(temp>=29)temp-=29;//闰年的秒钟数
				else break; 
			}
			else 
			{
				if(temp>=mon_table[temp1])temp-=mon_table[temp1];//平年
				else break;
			}
			temp1++;  
		}
		calendar.w_month=temp1+1;	//得到月份
		calendar.w_date=temp+1;  	//得到日期 
	}
	temp=timecount%86400;     		//得到秒钟数   	   
	calendar.hour=temp/3600;     	//小时
	calendar.min=(temp%3600)/60; 	//分钟	
	calendar.sec=(temp%3600)%60; 	//秒钟
	calendar.week=RTC_Get_Week(calendar.w_year,calendar.w_month,calendar.w_date);//获取星期   
	return 0;
}	 
//获得现在是星期几
//功能描述:输入公历日期得到星期(只允许1901-2099年)
//输入参数:公历年月日 
//返回值:星期号																						 
u8 RTC_Get_Week(u16 year,u8 month,u8 day)
{	
	u16 temp2;
	u8 yearH,yearL;
	
	yearH=year/100;	yearL=year%100; 
	// 如果为21世纪,年份数加100  
	if (yearH>19)yearL+=100;
	// 所过闰年数只算1900年之后的  
	temp2=yearL+yearL/4;
	temp2=temp2%7; 
	temp2=temp2+day+table_week[month-1];
	if (yearL%4==0&&month<3)temp2--;
	return(temp2%7);
}			  
 int main(void)
 {	 
 	u8 t=0;	
	delay_init();	    	 //延时函数初始化	  
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//设置中断优先级分组为组2:2位抢占优先级,2位响应优先级
	uart_init(115200);	 	//串口初始化为115200
 	LED_Init();			     //LED端口初始化
	LCD_Init();			 	
	usmart_dev.init(SystemCoreClock/1000000);	//初始化USMART	
	RTC_Init();	  			//RTC初始化
	POINT_COLOR=RED;//设置字体为红色 
	LCD_ShowString(60,50,200,16,16,"WarShip STM32");	
	LCD_ShowString(60,70,200,16,16,"RTC TEST");	
	LCD_ShowString(60,90,200,16,16,"ATOM@ALIENTEK");
	LCD_ShowString(60,110,200,16,16,"2015/1/14");		
	//显示时间
	POINT_COLOR=BLUE;//设置字体为蓝色
	LCD_ShowString(60,130,200,16,16,"    -  -  ");	   
	LCD_ShowString(60,162,200,16,16,"  :  :  ");		    
	while(1)
	{								    
		if(t!=calendar.sec)
		{
			t=calendar.sec;
			LCD_ShowNum(60,130,calendar.w_year,4,16);									  
			LCD_ShowNum(100,130,calendar.w_month,2,16);									  
			LCD_ShowNum(124,130,calendar.w_date,2,16);	 
			switch(calendar.week)
			{
				case 0:
					LCD_ShowString(60,148,200,16,16,"Sunday   ");
					break;
				case 1:
					LCD_ShowString(60,148,200,16,16,"Monday   ");
					break;
				case 2:
					LCD_ShowString(60,148,200,16,16,"Tuesday  ");
					break;
				case 3:
					LCD_ShowString(60,148,200,16,16,"Wednesday");
					break;
				case 4:
					LCD_ShowString(60,148,200,16,16,"Thursday ");
					break;
				case 5:
					LCD_ShowString(60,148,200,16,16,"Friday   ");
					break;
				case 6:
					LCD_ShowString(60,148,200,16,16,"Saturday ");
					break;  
			}
			LCD_ShowNum(60,162,calendar.hour,2,16);									  
			LCD_ShowNum(84,162,calendar.min,2,16);									  
			LCD_ShowNum(108,162,calendar.sec,2,16);
			LED0=!LED0;
		}	
		delay_ms(10);								  
	};  
 }

STM32控制程序分析

RTC_Init()函数:RTC初始化函数。

按照之前的RTC一般步骤初始化RTC函数,这里需要注意的是,为了区分是否是第一次执行RTC_Init()函数,这里使用了一个flag(向BKP_DR1寄存器写入0x5050,当然写入其他的数字也都是可以的)。

if (BKP_ReadBackupRegister(BKP_DR1) != 0x5050)		//从指定的后备寄存器中读出数据:读出了与写入的指定数据不相乎
		{	 			
		//第一次执行RTC_Init
		BKP_WriteBackupRegister(BKP_DR1, 0X5050);	//向指定的后备寄存器中写入用户程序数据
		}
	else//系统继续计时
		{
		//不是第一次执行RTC_Init
		}

为什么要区分是否第一次执行RTC_Init呢?因为如果由于断电等因素,程序中断,但是RTC时钟却还是在执行中;等恢复供电,重新启动程序,这个时候就不需要再对RTC时钟进行初始化了。

同时,设置外部低速晶振(LSE),使用外设低速晶振。需要检查指定的RCC标志位设置与否,等待低速晶振就绪。

这里时间的设置是:距离1970年1月1日0点0分0秒的时间距离。其中,RTC_Get()、RTC_Set()等函数的内容涉及到时间距离转换的各种算法,就不在本文的讨论范围了。

【STM32】RTC实时时钟概述、寄存器、库函数(RTC一般步骤)_第8张图片

 

你可能感兴趣的:(《嵌入式》STM32开发笔记)