Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。 [1] 因为包含了大量的科学包,Anaconda 的下载文件比较大(约 531 MB),如果只需要某些包,或者需要节省带宽或存储空间,也可以使用Miniconda这个较小的发行版(仅包含conda和 Python)
如图,打开anaconda,安装好之后会自动生成一个root环境,我们可以自己新建一个,点击左下角的create,进行环境的创建。
如图所示,给环境一个命名,选择支持的语言,这里我们就选择python3.6即可。
然后我们可以安装一个python的编辑器,jupyter notebook。在home里安装即可。
Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言。
Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown。 用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等
安装TensorFlow
左上角选择Not install 然后在右边的搜索框中输入需要安装的包名,选中需要装的包,点击右下角的apply,anaconda会自动将其相关的依赖一起安装。
import tensorflow as tf
先运行这一段代码,如果过没有报错,说明TensorFlow安装成功,接下来便可以进行开发了。
在TensorFlow的官方入门课程中,多次用到mnist数据集。
mnist数据集是一个数字手写体图片库,但它的存储格式并非常见的图片格式,所有的图片都集中保存在四个扩展名为idx3-ubyte的二进制文件。
如果我们想要知道大名鼎鼎的mnist手写体数字都长什么样子,就需要从mnist数据集中导出手写体数字图片。了解这些手写体的总体形状,也有助于加深我们对TensorFlow入门课程的理解。
1.读入mnist手写体数据;2.把数据的值从[0,1]浮点范围转化为黑白格式(背景为0-黑色,前景为255-白色);
3.根据mnist.train.labels的内容,生成数字索引,也就是建立每一张图片和其所代表数字的关联,由此创建对应的保存目录;
4.循环遍历mnist.train.images,把每张图片的像素数据赋值给python图片处理库PIL的Image类实例,再调用Image类的save方法把图片保存在第3步骤中创建的对应目录。
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from PIL import Image
# 声明图片宽高
rows = 28
cols = 28
# 要提取的图片数量
images_to_extract = 8000
# 当前路径下的保存目录
save_dir = "./mnist_digits_images"
# 读入mnist数据
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)
# 创建会话
sess = tf.Session()
# 获取图片总数
shape = sess.run(tf.shape(mnist.train.images))
images_count = shape[0]
pixels_per_image = shape[1]
# 获取标签总数
shape = sess.run(tf.shape(mnist.train.labels))
labels_count = shape[0]
# mnist.train.labels是一个二维张量,为便于后续生成数字图片目录名,有必要一维化(后来发现只要把数据集的one_hot属性设为False,mnist.train.labels本身就是一维)
#labels = sess.run(tf.argmax(mnist.train.labels, 1))
labels = mnist.train.labels
# 检查数据集是否符合预期格式
if (images_count == labels_count) and (shape.size == 1):
print ("数据集总共包含 %s 张图片,和 %s 个标签" % (images_count, labels_count))
print ("每张图片包含 %s 个像素" % (pixels_per_image))
print ("数据类型:%s" % (mnist.train.images.dtype))
# mnist图像数据的数值范围是[0,1],需要扩展到[0,255],以便于人眼观看
if mnist.train.images.dtype == "float32":
print ("准备将数据类型从[0,1]转为binary[0,255]...")
for i in range(0,images_to_extract):
for n in range(pixels_per_image):
if mnist.train.images[i][n] != 0:
mnist.train.images[i][n] = 255
# 由于数据集图片数量庞大,转换可能要花不少时间,有必要打印转换进度
if ((i+1)%50) == 0:
print ("图像浮点数值扩展进度:已转换 %s 张,共需转换 %s 张" % (i+1, images_to_extract))
# 创建数字图片的保存目录
for i in range(10):
dir = "%s/%s/" % (save_dir,i)
if not os.path.exists(dir):
print ("目录 ""%s"" 不存在!自动创建该目录..." % dir)
os.makedirs(dir)
# 通过python图片处理库,生成图片
indices = [0 for x in range(0, 10)]
for i in range(0,images_to_extract):
img = Image.new("L",(cols,rows))
for m in range(rows):
for n in range(cols):
img.putpixel((n,m), int(mnist.train.images[i][n+m*cols]))
# 根据图片所代表的数字label生成对应的保存路径
digit = labels[i]
path = "%s/%s/%s.bmp" % (save_dir, labels[i], indices[digit])
indices[digit] += 1
img.save(path)
# 由于数据集图片数量庞大,保存过程可能要花不少时间,有必要打印保存进度
if ((i+1)%50) == 0:
print ("图片保存进度:已保存 %s 张,共需保存 %s 张" % (i+1, images_to_extract))
else:
print ("图片数量和标签数量不一致!")
有了数据之后便可以对数据集进行训练,代码要和数据集在同一级目录下面
mnist_digits_images 和trainData.ipynb 在同一级目录,(也可以将.ipynb下载为.py文件)
import os
import numpy as np
import tensorflow as tf
from PIL import Image
# 第一次遍历图片目录是为了获取图片总数
input_count = 0
for i in range(0,10):
dir = './mnist_digits_images/%s/' % i
# 这里可以改成你自己的图片目录,i为分类标签
for rt, dirs, files in os.walk(dir):
for filename in files:
input_count += 1
input_images = np.array([[0]*784 for i in range(input_count)])
input_labels = np.array([[0]*10 for i in range(input_count)])
# 第二次遍历图片目录是为了生成图片数据和标签
index = 0
for i in range(0,10):
dir = './mnist_digits_images/%s/' % i # 这里可以改成你自己的图片目录,i为分类标签
for rt, dirs, files in os.walk(dir):
for filename in files:
filename = dir + filename
img = Image.open(filename)
width = img.size[0]
height = img.size[1]
for h in range(0, height):
for w in range(0, width):
# 通过这样的处理,使数字的线条变细,有利于提高识别准确率
if img.getpixel((w, h)) > 230:
input_images[index][w+h*width] = 0
else:
input_images[index][w+h*width] = 1
input_labels[index][i] = 1
index += 1
# 定义输入节点,对应于图片像素值矩阵集合和图片标签(即所代表的数字)
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])
# 定义第一个卷积层的variables和ops
W_conv1 = tf.Variable(tf.truncated_normal([7, 7, 1, 32], stddev=0.1))
b_conv1 = tf.Variable(tf.constant(0.1, shape=[32]))
L1_conv = tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='SAME')
L1_relu = tf.nn.relu(L1_conv + b_conv1)
L1_pool = tf.nn.max_pool(L1_relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
W_conv2 = tf.Variable(tf.truncated_normal([3, 3, 32, 64], stddev=0.1))
b_conv2 = tf.Variable(tf.constant(0.1, shape=[64]))
L2_conv = tf.nn.conv2d(L1_pool, W_conv2, strides=[1, 1, 1, 1], padding='SAME')
L2_relu = tf.nn.relu(L2_conv + b_conv2)
L2_pool = tf.nn.max_pool(L2_relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
b_fc1 = tf.Variable(tf.constant(0.1, shape=[1024]))
h_pool2_flat = tf.reshape(L2_pool, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
b_fc2 = tf.Variable(tf.constant(0.1, shape=[10]))
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
# 定义优化器和训练op
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer((1e-4)).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print ("一共读取了 %s 个输入图像, %s 个标签" % (input_count, input_count))
# 设置每次训练op的输入个数和迭代次数,这里为了支持任意图片总数,定义了一个余数remainder,譬如,如果每次训练op的输入个数为60,图片总数为150张,则前面两次各输入60张,最后一次输入30张(余数30)
batch_size = 60
iterations = 100
batches_count = int(input_count / batch_size)
remainder = input_count % batch_size
print ("数据集分成 %s 批, 前面每批 %s 个数据,最后一批 %s 个数据" % (batches_count+1, batch_size, remainder))
# 执行训练迭代
for it in range(iterations):
# 这里的关键是要把输入数组转为np.array
for n in range(batches_count):
train_step.run(feed_dict={x: input_images[n*batch_size:(n+1)*batch_size], y_: input_labels[n*batch_size:(n+1)*batch_size], keep_prob: 0.5})
if remainder > 0:
start_index = batches_count * batch_size;
train_step.run(feed_dict={x: input_images[start_index:input_count-1], y_: input_labels[start_index:input_count-1], keep_prob: 0.5})
# 每完成五次迭代,判断准确度是否已达到100%,达到则退出迭代循环
iterate_accuracy = 0
if it%5 == 0:
iterate_accuracy = accuracy.eval(feed_dict={x: input_images, y_: input_labels, keep_prob: 1.0})
print ('iteration %d: accuracy %s' % (it, iterate_accuracy))
if iterate_accuracy >= 1:
break;
print ('完成训练!')
然后可以选出一组图片,用训练好的模型进行识别
license_num = []
for n in range(2,8):
path = "result/%s.bmp" % (n)
img = Image.open(path)
width = img.size[0]
height = img.size[1]
img_data = [[0]*784 for i in range(1)]
for h in range(0, height):
for w in range(0, width):
if img.getpixel((w, h)) < 190:
img_data[0][w+h*width] = 0
else:
img_data[0][w+h*width] = 1
# 获取softmax结果前三位的index和概率值
soft_max = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
result = sess.run(soft_max, feed_dict = {x: np.array(img_data), keep_prob: 1.0})
max1 = 0
max2 = 0
max3 = 0
max1_index = 0
max2_index = 0
max3_index = 0
for j in range(10):
if result[0][j] > max1:
max1 = result[0][j]
max1_index = j
continue
if (result[0][j]>max2) and (result[0][j]<=max1):
max2 = result[0][j]
max2_index = j
continue
if (result[0][j]>max3) and (result[0][j]<=max2):
max3 = result[0][j]
max3_index = j
continue
license_num.append(max1_index)
print ("softmax结果前三位概率:%s: %.2f%% %s: %.2f%% %s: %.2f%%"
% (max1_index,max1*100, max2_index,max2*100, max3_index,max3*100))
print ("车牌号为: %s" % license_num)
识别准确率50%,需要后续对参数进行调整,来提升准确率。