10-SparkSQL读取mysql数据源并将结果写回mysql

一、创建测试表t_user2user_tt_result

1、t_user2表结构如下:

CREATE TABLE `t_user2` (
  `id` int(11) DEFAULT NULL COMMENT 'id',
  `name` varchar(64) DEFAULT NULL COMMENT '用户名',
  `password` varchar(64) DEFAULT NULL COMMENT '密码',
  `age` int(11) DEFAULT NULL COMMENT '年龄'
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

2、user_t表结构如下:

CREATE TABLE `user_t` (
  `id` int(11) DEFAULT NULL COMMENT 'id',
  `name` varchar(64) DEFAULT NULL COMMENT '姓名',
  `password` varchar(64) DEFAULT NULL COMMENT '密码',
  `address` varchar(64) DEFAULT NULL COMMENT '地址',
  `age` int(11) DEFAULT NULL COMMENT '年龄'
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

3、t_result表结构如下:

CREATE TABLE `t_result` (
  `id` int(11) DEFAULT NULL COMMENT 'id',
  `name` varchar(64) DEFAULT NULL COMMENT '姓名',
  `password` varchar(64) DEFAULT NULL COMMENT '密码',
  `address` varchar(64) DEFAULT NULL COMMENT '地址',
  `age` int(11) DEFAULT NULL COMMENT '年龄'
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

4、插入测试数据:

INSERT INTO `t_user2` VALUES (12, 'cassie', '1234562', 25);
INSERT INTO `t_user2` VALUES (11, 'zhangs', '123456', 25);
INSERT INTO `t_user2` VALUES (23, 'zhangs', '2321312', 34);
INSERT INTO `t_user2` VALUES (22, 'tom', 'sadfdsa', 23);
 
 
INSERT INTO `user_t` VALUES (1, 'zhangs', '123456', NULL, 25);
INSERT INTO `user_t` VALUES (2, 'zhangs', '123456', NULL, 252);

二、创建maven工程,导入mysql驱动包、spark相关包

mysql-connector-java.5.1.24.jar
spark-assembly-1.6.2-hadoop2.6.0.jar
spark-examples-1.6.2-hadoop2.6.0.jar

注:pom.xml文件内容如下



    4.0.0

    com.itxiaobai
    00-SparkSql
    1.0-SNAPSHOT

    
        
            
                io.netty
                netty-all
                4.1.18.Final
            
        
    
    
        
            mysql
            mysql-connector-java
            5.1.47
        
        
            com.google.code.gson
            gson
            2.8.5
        
        
            junit
            junit
            4.12
        
        
            org.apache.hadoop
            hadoop-client
            2.7.5
        
        
            org.apache.hadoop
            hadoop-common
            2.7.5
        
        
            org.apache.hadoop
            hadoop-hdfs
            2.7.5
        
        
        
            org.apache.spark
            spark-sql_2.11
            2.3.0
        
        
        
            org.apache.spark
            spark-core_2.11
            2.3.0
        
        
        
            org.apache.spark
            spark-core_2.11
            2.3.0
        
        
        
            org.scala-lang
            scala-library
            2.11.7
        
        
            org.slf4j
            slf4j-log4j12
            1.7.10
        
        
            commons-lang
            commons-lang
            2.5
        
        
            commons-logging
            commons-logging
            1.1.3
        
    

三、创建本地执行的scala代码类:

SparkSqlMysqlDatasource.scala
package sql
 
import java.util.Properties
 
import org.apache.spark.sql.{DataFrame, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
 
/**
  * 生产环境:下提交任务
  * spark-submit --class sql.SparkSqlMysqlDatasource --master yarn-cluster --executor-memory 2G --num-executors 2 --driver-memory 1g --executor-cores 1  /data1/e_heyutao/sparktest/sparkEnn.jar
  *
  */
object SparkSqlMysqlDatasource {
  //数据库配置
  lazy val url = "jdbc:mysql://your_ip:3306/my_test"
  lazy val username = "root"
  lazy val password = "secret_password"
 
  def main(args: Array[String]) {
//    val sparkConf = new SparkConf().setAppName("sparkSqlTest").setMaster("local[2]").set("spark.app.id", "sql")
    val sparkConf = new SparkConf().setAppName("sparkSqlTest").setMaster("yarn-cluster").set("spark.app.id", "sqlTest")
    //序列化
    sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    sparkConf.set("spark.kryoserializer.buffer", "256m")
    sparkConf.set("spark.kryoserializer.buffer.max", "2046m")
    sparkConf.set("spark.akka.frameSize", "500")
    sparkConf.set("spark.rpc.askTimeout", "30")
    //获取context
    val sc = new SparkContext(sparkConf)
    //获取sqlContext
    val sqlContext = new SQLContext(sc)
 
    //引入隐式转换,可以使用spark sql内置函数
    import sqlContext.implicits._
    
    //创建jdbc连接信息
    val uri = url + "?user=" + username + "&password=" + password + "&useUnicode=true&characterEncoding=UTF-8"
    val prop = new Properties()
    //注意:集群上运行时,一定要添加这句话,否则会报找不到mysql驱动的错误
    prop.put("driver", "com.mysql.jdbc.Driver")
    //加载mysql数据表
    val df_test1: DataFrame = sqlContext.read.jdbc(uri, "user_t", prop)
    val df_test2: DataFrame = sqlContext.read.jdbc(uri, "t_user2", prop)
 
    //从dataframe中获取所需字段
    df_test2.select("id", "name", "age").collect()
      .foreach(row => {
        println("id  " + row(0) + " ,name  " + row(1) + ", age  " + row(2))
      })
    //注册成临时表
    df_test1.registerTempTable("temp_table")
 
    val total_sql = "select * from temp_table "
    val total_df: DataFrame = sqlContext.sql(total_sql)
    
     //将结果写入数据库中
    val properties=new Properties()
    properties.setProperty("user","root")
    properties.setProperty("password","secret_password")
    total_df.write.mode("append").jdbc("jdbc:mysql://your_ip:3306/my_test?useUnicode=true&characterEncoding=UTF-8","t_result",properties)
 
    /**
      * 注意:查看源码可以知道详细意思
    def mode(saveMode: String): DataFrameWriter = {
          this.mode = saveMode.toLowerCase match {
          case "overwrite" => SaveMode.Overwrite
          case "append" => SaveMode.Append
          case "ignore" => SaveMode.Ignore
          case "error" | "default" => SaveMode.ErrorIfExists
          case _ => throw new IllegalArgumentException(s"Unknown save mode: $saveMode. " +
            "Accepted modes are 'overwrite', 'append', 'ignore', 'error'.")
    }
      */
 
    //分组后求平均值
    total_df.groupBy("name").avg("age").collect().foreach(x => {
      println("name " + x(0))
      println("age " + x(1))
    })
 
  }
}

结果:

id  12 ,name  cassie, age  25
id  11 ,name  zhangs, age  25
id  23 ,name  zhangs, age  34
id  22 ,name  tom, age  23
name zhangs
age    138.5

四、查看数据库表t_result,发现刚才从mysql中读取出来的数据已经插入到表中

在这里插入图片描述

spark相关文档

spark学习总结

你可能感兴趣的:(——Spark,Spark)