[Leetcode][BST]二分搜索子树相关题目汇总/分析/总结

目录

  1. Convert/Create
    • 99 Recover Binary Search Tree
    • 108 Convert Sorted Array to Binary Search Tree
    • 109 Convert Sorted List to Binary Search Tree
    • 538 Convert BST to Greater Tree
    • 1038 Binary Search Tree to Greater Sum Tree
    • 173 Binary Search Tree Iterator
    • 449 Serialize and Deserialize BST
    • 1008 Construct Binary Search Tree from Preorder Traversal
  2. Valid/Unique
    • 98 Validate Binary Search Tree
    • 96 Unique Binary Search Trees
    • 95 Unique Binary Search Trees II
  3. Delete/Insert/Count
    • 701 Insert into a Binary Search Tree
    • 222 Count Complete Tree Nodes
    • 450 Delete Node in a BST
    • 669 Trim a Binary Search Tree
    • 563 Binary Tree Tilt
  4. Search
    • 700 Search in a Binary Search Tree
    • 653 Two Sum IV - Input is a BST
    • 662 Maximum Width of Binary Tree
  5. Find
    • 530 Minimum Absolute Difference in BST
    • 230 Kth Smallest Element in a BST
    • 501 Find Mode in Binary Search Tree
    • 235 Lowest Common Ancestor of a Binary Search Tree
    • 783 Minimum Distance Between BST Nodes
  6. Other
    • 968 Binary Tree Cameras

A BST Definition

public class TreeNode{
    int val;
    TreeNode left;
    TreeNode right;
    TreeNode(int x){val = x;}
}

[Convert/Create to BST]

#99 Recover Binary Search Tree

BST中有两个node出现错误,需要在不改变结构的情况下交换节点

  • Sol: In-order, Recursion
    中序遍历的特性, 标记乱序点,第一个乱取点取最大值,第二个乱取点取最小的乱序点。交换
   TreeNode pre = new TreeNode(Integer.MIN_VALUE);
   public void recoverTree(TreeNode root) {
       TreeNode[] swap = new TreeNode[2];
       help(root, swap);
       if(swap[0] != null && swap[1] != null){
           int tmp = swap[0].val;
           swap[0].val = swap[1].val;
           swap[1].val = tmp;
       }
   }
   public void help(TreeNode cur, TreeNode[] swap){
       if(cur == null){return;}
       help(cur.left, swap);
       if(pre.val >= cur.val){
           if(swap[0] == null){
               swap[0] = pre;
           }
           if(swap[0] != null){
               swap[1] = cur;
           }
       }
       pre = cur;
       help(cur.right, swap);
   }
  • Sol: In-order, Iteration
    public void recoverTree(TreeNode root) {
        TreeNode pre = new TreeNode(Integer.MIN_VALUE);
        TreeNode first = null, second = null;
        Stack s = new Stack<>();
        while(root!=null || !s.isEmpty()){
            while(root != null){
                s.push(root);
                root = root.left;
            }
            root = s.pop();
            if(pre.val > root.val){
                if(first == null){
                    first = pre;
                }
                if(first != null){                       
                    second = root;
                }
            }
            pre = root;
            root = root.right;
        }
        Swap(first, second);
    }
    public void Swap(TreeNode first, TreeNode second){
        if(first != null && second != null){
            int tmp = first.val;
            first.val = second.val;
            second.val = tmp;
        }
    }
#108 Convert Sorted Array to Binary Search Tree
  • Sol: 递归构建
  1. 先得到数组元素的中间元素,将它的值作为根节点
  2. 并且以它为中间中介,将数组划分为左右区间。根节点的左子树指向左区间,右节点指向右区间。
  3. 再针对左右区间进行同样的操作。直到左指针和右指针重合。
public TreeNode sortedArrayToBST(int[] nums) {
        return dfs(nums, 0, nums.length-1);
}
public TreeNode dfs(int[] nums, int start, int end) {
    if(end < start){return null;}
    int mid = start + (end - start) / 2;
    TreeNode root = new TreeNode(nums[mid]);
    root.left = sortedArrayToBST(nums, start, mid-1);
    root.right = sortedArrayToBST(nums, mid+1, end);
    return root;
}

知识点--二分搜索算法(binary search)

二分搜索只对有序数组有效。


[Leetcode][BST]二分搜索子树相关题目汇总/分析/总结_第1张图片
public static int binarySearch(int[] arr, int start, int end, int hkey){
    if (start > end)
        return -1;

    int mid = start + (end - start)/2;    //防止溢位
    if (arr[mid] > hkey)
        return binarySearch(arr, start, mid - 1, hkey);
    if (arr[mid] < hkey)
        return binarySearch(arr, mid + 1, end, hkey);
    return mid;  
}

#109 Convert Sorted List to Binary Search Tree
  • Sol1: 将单链表中的值存入一个数组中
    通过数组来构建二叉树,算法时间复杂度是:O(n),空间复杂度是:O(n)
  • Sol2: 二分归并|递归实现|快慢指针
    A LinkedList Definition
public class ListNode {
      int val;
      ListNode next;
      ListNode(int x) { val = x; }
  }
public TreeNode sortedListToBST(ListNode head) {
        return rec(head, null);
}
private TreeNode rec(ListNode start, ListNode end) {
    if(end == start){return null;}
    ListNode p = start, q = start;
    while(q.next != end && q.next.next != end){
        p = p.next;
        q = q.next.next;
    }
    TreeNode root = new TreeNode(p.val);
    root.left = rec(start, p);
    root.right = res(p.next, end);
    return root;
}
#538 Convert BST to Greater Tree
  • Sol 中序遍历-先右支
    private int sum = 0;
    public TreeNode convertBST(TreeNode root) {
        if(root == null){return null;}
        convertBST(root.right);
        root.val += sum;
        sum = root.val;
        convertBST(root.left);
        return root;
    }
#1038 Binary Search Tree to Greater Sum Tree
  • Sol 中序遍历
    int sum = 0;
    public TreeNode bstToGst(TreeNode root) {
        if(root == null){return root;}
        bstToGst(root.right);
        sum += root.val;
        root.val = sum;
        bstToGst(root.left);
        return root;
    }
#173 Binary Search Tree Iterator
  • Sol 中序遍历+栈
    Stack s;
    public BSTIterator(TreeNode root) {
        s = new Stack<>();
        help(root);
    }
    public void help(TreeNode root){
        if(root == null){return;}
        help(root.right);
        s.add(root);
        help(root.left);
    }
    /** @return whether we have a next smallest number */
    public boolean hasNext() {
        return !s.isEmpty();
        
    }
    /** @return the next smallest number */
    public int next() {
        return s.pop().val;
    }
#449 Serialize and Deserialize BST

ensure that a binary search tree can be serialized to a string and this string can be deserialized to the original tree structure.

  • **Sol pre order traversal **
    recursively convert with the lower and upper boundary check
// Encodes a tree to a single string.
    public String serialize(TreeNode root) {
        StringBuilder res = new StringBuilder();
        helpSer(root, res);
        return new String(res);
    }
    public void helpSer(TreeNode root, StringBuilder s){
        if(root == null) return;
        s.append((char)root.val);
        helpSer(root.left, s);
        helpSer(root.right, s);
    }

    // Decodes your encoded data to tree.
    int index = 0;
    public TreeNode deserialize(String data) {
        char[] input = data.toCharArray();
        return helpDes(input , Integer.MIN_VALUE , Integer.MAX_VALUE);
        
    }
    public TreeNode helpDes(char[] data, int min, int max){
        if(index >= data.length || Integer.valueOf(data[index]) >= max || Integer.valueOf(data[index]) <= min){return null;}
        TreeNode root = new TreeNode(Integer.valueOf(data[index++]));
        root.left = helpDes(data, min, Integer.valueOf(root.val));
        root.right = helpDes(data, Integer.valueOf(root.val), max);
        return root;
    }
#1008 Construct Binary Search Tree from Preorder Traversal
  • Sol
    int index = 0;
    public TreeNode bstFromPreorder(int[] preorder) {
        if(preorder.length == 0){return null;}
        return help(preorder, 0, preorder.length-1);
    }
    public TreeNode help(int[] list, int start, int end){
        if(start > end || index == list.length) return null;
        TreeNode root = new TreeNode(list[index++]);
        if(start == end){return root;}
        int i = 0;
        for(i = start; i <= end; i++){
            if(list[i] > root.val) break;
        }
        root.left = help(list, index, i-1);
        root.right = help(list, i, end);
        return root;
    }

[Valid/Unique]


#98 Validate Binary Search Tree

BST特性:
root.Left中所有节点的最大值小于root.Val
root.Right中所有节点的最小值大于root.Val

  • sol1 Recursion
    考虑root为Integer.MIN_VALUE的情况
//Recursion
    public boolean isValidBST(TreeNode root) {
        return help(root, null, null);
    }
    public boolean help(TreeNode root, Integer min, Integer max) {
        if(root == null) return true;
        int val = root.val;
        if((min!=null && val <= min) ||(max != null && val >= max)) return false;
        return help(root.left, min, val) && help(root.right, val, max);   
    }

Time complexity : O(N) since we visit each node exactly once.
Space complexity : O(N) since we keep up to the entire tree.

  • sol2 Iteration
    利用Stack改写递归过程
//Iteration
class Solution {
    public boolean isValidBST(TreeNode root) {
        LinkedList s = new LinkedList<>();
        LinkedList left = new LinkedList<>();
        LinkedList right = new LinkedList<>();
        s.add(root);
        left.add(null);
        right.add(null);
        Integer l = null;
        Integer r = null;
        while(!s.isEmpty()){
            root = s.poll();
            l = left.poll();
            r = right.poll();
            if(root == null)continue;
            if(l!=null && l >= root.val) return false;
            if(r!=null && r <= root.val) return false;
            s.add(root.left);
            left.add(l);
            right.add(root.val);
            s.add(root.right);
            left.add(root.val);
            right.add(r);
        }
        return true;
    }
}

Time complexity : O(N) since we visit each node exactly once.
Space complexity : O(N) since we keep up to the entire tree.

  • sol3 Inorder traversal
    中序遍历
    special test case: [-2147483648]
    public boolean isValidBST(TreeNode root) {
        Stack s = new Stack<>();
        Integer tmp = null;
        while(root!=null || !s.isEmpty()){
            while(root != null){
                s.add(root);
                root = root.left;
            }
            root = s.pop();
            if(tmp != null && root.val <= tmp) return false;
            tmp = root.val;
            root = root.right;
        }
        return true;
    }

Time complexity : O(N) in the worst case when the tree is BST or the "bad" element is a rightmost leaf.
Space complexity : O(N) to keep stack.

#96 Unique Binary Search Trees

输入n,输出由1...n组成不同的BST的个数

  • Sol 一维动态规划
    dp[i]为[1, i]产生的Unique BST个数, i为跟节点,左子树个数为[1, i-1]右子树个数为[i+1, n];
    dp[0] = 1
    dp[1] = 1
    dp[2] = dp[1] * dp[0] + dp[0] * dp[1]
    dp[3] = dp[0] * dp[2] + dp[2] * dp[0] + dp[1] * dp[1]
    递推公式可得dp[i]=dp[0]dp[i-1]+...+dp[k-1]dp[i-k]+...+dp[i-1]*dp[0]
    public int numTrees(int n) {
        int[] dp = new int[n+1];
        dp[0] = 1;
        dp[1] = 1;
        for(int i = 2; i < n+1; i++){
            for(int j = 0; j < i; j++){
                dp[i] += dp[j] * dp[i-1-j];
            }
        }
        return dp[n];
    }
#95 Unique Binary Search Trees II

输出用1–n这几个数字能组成的所有BST

  • Sol 动态规划
    选出根结点后应该先分别求解该根的左右子树集合,然后将左右子树相互配对,把根结点放入链表中.
public List generateTrees(int n) {
        if(n < 1){return new ArrayList();}
        return help(1, n);
    }
    public List help(int start, int end){
        List res = new ArrayList<>();
        if(start > end){
            res.add(null);
            return res;
        }
        for(int i = start; i <= end; i++){
            List left = help(start, i-1);
            List right = help(i+1, end);
            for(TreeNode l : left){
                for(TreeNode r : right){
                    TreeNode root = new TreeNode(i);
                    root.left = l;
                    root.right = r;
                    res.add(root);
                }
            }
        }
        return res;
    }

[Delete/Insert/Count]

#701 Insert into a Binary Search Tree*

不需要平衡,只需要插入

  • Sol BST的特性+递归
    遇到空就直接插入就好了
    public TreeNode insertIntoBST(TreeNode root, int val) {
        if(root == null){return new TreeNode(val);}
        if(root.val < val){
            root.right = insertIntoBST(root.right, val);
        }else{
            root.left = insertIntoBST(root.left, val);
        }
        return root;
    }
#222 Count Complete Tree Nodes

完全二叉树节点数统计

  • Sol1 对二叉树进行遍历
    最直接的方法是对二叉树进行遍历,然后逐个节点进行统计,时间复杂度是O(n),n为节点数量。
    ==>Time Limited Exceeded
  • Sol2 BST特性
    如果右子树的高度等于整棵二叉树的高度-1的话,那么左子树一定是一棵满二叉树,这个时候我们就很容易的计算出总结点数nodes=2(h)-1 + 1 +右子树节点数(这里的+1表示root节点)。如果右子树的高度不等于整棵二叉树的高度-1的话,那么左子树不一定是一棵满二叉树,但是有一点可以确定,右子树一定是一棵满二叉树,这个时候我们就很容易的计算出总结点数nodes=2(h-1)-1 + 1 +左子树节点数(这里的+1表示root节点)。
    public int countNodes(TreeNode root) {
        if(root == null){return 0;}
        int right_height = height(root.right);
        int root_height = height(root);
        if(right_height == root_height - 1){
            return 1 +(int)Math.pow(2, root_height-1) - 1 + countNodes(root.right);
        }else{
            return 1 + (int)Math.pow(2, right_height) - 1 + countNodes(root.left);
        }
    }
    public int height(TreeNode r){
        int height = 0;
        while(r != null){
             r = r.left;
            height++;
        }
        return height;
    }
#450 Delete Node in a BST

删除BST中节点
Time complexity should be O(height of tree)

  • Sol 二分搜索寻找key + 递归处理key节点 + 递归处理旁枝
  1. 原函数递归, 如果root.Val大于key,那就让左边处理root.Left = deleteNode(root.Left, key),否则让有右边处理,最后返回root
    如果root.Val等于key,那我们规定把左边的点递上来:
  2. -- 如果root没有左叶子,那么直接返回root的右叶子,因为root需要被删除
    -- 如果root的左叶子存在:
    • 如果root的右叶子不存在,那么直接返回root的左叶子
    • 存储root.Left.Right到tmp, 然后让root.Left.Right = root.Right,最后在root.Right 中插入 tmp,由BST特性可知,tmp中所有数肯定小于root.Right,递归找到root.Right的最左侧,插入即可。
    public TreeNode deleteNode(TreeNode root, int key) { 
        if(root == null){return root;}
        if(root.val == key){
            return help(root);
        }
        if(root.val < key){
            root.right = deleteNode(root.right, key);
        }else{
            root.left = deleteNode(root.left, key);
        }
        return root;
    }
    public TreeNode help(TreeNode root){
        if(root.left == null){
            return root.right;
        }
        if(root.right == null){
            return root.left;
        }
        TreeNode tmp = root.left.right;
        root.left.right = root.right;
        TreeNode end = root.right;
        while(end.left != null){
            end = end.left;
        }
        end.left = tmp;
        return root.left;
    }
#669 Trim a Binary Search Tree
  • Sol Recursion
public TreeNode trimBST(TreeNode root, int L, int R) {
        if(root == null){return null;}
        if(root.val < L){
            return trimBST(root.right, L, R);
        }
        if(root.val > R){
            return trimBST(root.left, L, R);
        }
        root.left = trimBST(root.left, L, R);
        root.right = trimBST(root.right, L, R);
        return root;
    }

Time Complexity:O(N) We visit each node at most once.
Space Complexity: O(N). Even though we don't explicitly use any additional memory, the call stack of our recursion could be as large as the number of nodes in the worst case.

#563 Binary Tree Tilt
  • Sol
    int sum = 0;
    public int findTilt(TreeNode root) {
        help(root);
        return sum;
    }
    public int help(TreeNode root){
        if(root == null){return 0;}
        int left = help(root.left);
        int right = help(root.right);
        sum += Math.abs(left - right);
        return left + right + root.val;
    }

[Search]

#700 Search in a Binary Search Tree

根据BST特性, 有二分搜索的效果
因为比root小的元素全部在root.Left,比root大的元素全部在root.Right

  • Sol
    public TreeNode searchBST(TreeNode root, int val) {
        if(root == null){return null;}
        if(root.val == val){return root;}
        if(root.val < val){return searchBST(root.right, val);}
        else{return searchBST(root.left, val);}
    }
#653 Two Sum IV - Input is a BST
  • Sol inorder
    List l = new ArrayList<>();
    public boolean findTarget(TreeNode root, int k) {
        inorder(root);
        for(int i = 0, j = l.size()-1; i < j;){
            int sum = l.get(i) + l.get(j);
            if(sum == k) return true;
            if(sum < k)i++;
            else j--;
        }
        return false;
    }
    public void inorder(TreeNode root){
        if(root == null){return;}
        inorder(root.left);
        l.add(root.val);
        inorder(root.right);
    }
#662 Maximum Width of Binary Tree

** Sol1 BFS**

public int widthOfBinaryTree(TreeNode root) {
        if(root == null){return 0;}
        int res = 1;
        Deque q = new LinkedList<>();
        q.add(root);
        while(!q.isEmpty()){
            while(!q.isEmpty() && q.peek()==null){
                q.poll();
            }
            while(!q.isEmpty() && q.peekLast()==null){
                q.pollLast();
            }
            // System.out.println(q.size());
            res = Math.max(res, q.size());
            int size = q.size();;
            for(int i = 0; i < size; i++){
                TreeNode cur = q.poll();
                if(cur == null){
                    q.add(null);
                    q.add(null);
                }else{
                    if(cur.left != null) q.add(cur.left);
                    else{q.add(null);}
                    if(cur.right != null) q.add(cur.right);
                    else{q.add(null);}
                }
            }
        }
        return res;
    }
  • Sol2 DFS + HashMap
int res;
    Map map;
    public int widthOfBinaryTree(TreeNode root) {
        res = 0;
        map = new HashMap<>();
        help(root, 0, 0);
        return res;
    }
    public void help(TreeNode root, int level, int pos){
        if(root == null) return;
        map.computeIfAbsent(level, x->pos);
        res = Math.max(res, pos - map.get(level) + 1);
        help(root.left, level+1, pos * 2);
        help(root.right, level+1, pos*2+1);
    }

Time O(n)
Space O(n)


[Find]

#530 Minimum Absolute Difference in BST

BST最小绝对值差

  • Sol1 中序遍历--迭代
public int getMinimumDifference(TreeNode root) {
        int res = Integer.MAX_VALUE;
        Stack s = new Stack<>();
        TreeNode tmp_root = null;
        while(!s.isEmpty() || root != null){
            while(root!=null){
                s.push(root);
                root = root.left;
            }
            root = s.pop();
            if(tmp_root!=null){
                int tmp = Math.abs(root.val - tmp_root.val);
                if(tmp < res){
                    res = tmp;
                }
            }
            tmp_root = root;
            root = root.right;
        }
        return res;
    }
  • Sol2 中序遍历--递归
    int res = Integer.MAX_VALUE;
    TreeNode last = null;
    public int getMinimumDifference(TreeNode root) {
        if(root == null){return res;}
        res = getMinimumDifference(root.left);
        if(last!=null){
            res = Math.min(res, Math.abs(root.val - last.val));
        }
        last = root;
        return getMinimumDifference(root.right);
    }
#230 Kth Smallest Element in a BST

使用BST的中序遍历特性

  • Sol1: 中序遍历, 递归实现
    BST的中序遍历必定是严格递增的。
public int count, res;
public int kthSmallest(TreeNode root, int k){
    if(root.left!=null){kthSmallest(root.left, k);}
    if(++count == k){res = root.val;}
    if(root.right!=null){kthSmallest(root.right, k);}
    return res;
}
  • Sol2: 非递归实现,栈
    int res = 0;
    Stack s = new Stack<>();
    while(true){
        while(root != null){
            s.push(root);
            root = root.left;
        }
        if(!s.isEmpty()){
            root = s.pop();
            if(--k == 0){return root.val;}
            root = root.right;
        }else{break;}
    }
    return 0;
#501 Find Mode in Binary Search Tree

找众数

  • Sol1 HashMap
    构造一个哈希表,记录数字和其出现次数之前的映射,同时变量mx记录当前最多的次数值。
    遍历完树之后,根据mx值就能把对应的元素找出来。用随意一种遍历方式都可以。
  • Sol2 中序遍历
    List res = new ArrayList<>();
    int count = 1;
    Integer pre = null;
    int max = 0;
    public int[] findMode(TreeNode root) {
        help(root);
        int[] result = new int[res.size()];
        for (int i = 0; i < res.size(); ++i) result[i] = res.get(i);
        return result;
    }
    public void help(TreeNode root){
        if(root == null){return;}
        help(root.left);
        if(pre != null){
            if(root.val == pre){
                count++;
            }else{
                count = 1;
            }
        }
        if(count > max){
            max = count;
            res.clear();
            res.add(root.val);
        }else if( count == max){
            res.add(root.val);
        }
        pre = root.val;
        help(root.right);
    }
#235 Lowest Common Ancestor of a Binary Search Tree

BST最近公共祖先

  • Sol Recursive
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if(p.val > root.val && q.val > root.val){
            return lowestCommonAncestor(root.right, p, q);
        }else if(q.val < root.val && p.val < root.val){
            return lowestCommonAncestor(root.left, p, q);
        }else{
            return root;
        }
    }
#783 Minimum Distance Between BST Nodes
  • Sol Recursive, in-order
    int res = Integer.MAX_VALUE;
    Integer pre = null;
    public int minDiffInBST(TreeNode root) {
        if(root == null){return res;}
        minDiffInBST(root.left);
        if(pre != null){
            res = Math.min(res, root.val - pre);
        }
        pre = root.val;
        minDiffInBST(root.right);
        return res;
    }

[Other]

**#968## Binary Tree Cameras

给定一棵二叉树,要求在上面一些结点上放照相机(照相机可以覆盖结点自己、它的父结点和子结点),使得所有的结点都被覆盖,且被放照相机的结点总数最少。

  • Sol1 动态规划DP
    节点(cur_node)的状态:
    状态0: 两个子节点均被覆盖,当前节点不被覆盖。
    状态1: 当前节点与两个子节被覆盖,但是当前节点没有放置相机
    状态3: 当前节点放置了相机
    状态转移条件:
    令solve(node)函数为求解函数(递归函数):
  1. 为了满足状态0,则cur_node的两个子节点都必须处于状态1。当node为状态0时,返回覆盖其子树所有节点所需的最小相机数(dp[0])
  2. 为了满足状态1,则cur_node的两个子节点中至少有一个子节点处于状态2,另一个子节点处于状态1或状态2。当node为状态1时,返回覆盖其子树所有节点所需的最小相机数(dp[1])
  3. 对于状态2,由于cur_node放置相机,两个子节点可以处于任何状态。当node为状态2时,返回覆盖其子树所有节点所需的最小相机数(dp[2])
    由于状态0没有覆盖到当前节点,因此要求解覆盖包含当前节点的最优解时,其解为min(dp[1], dp[2])。
    递归出口:
    当当前节点为NULL时,跳出递归
    public int minCameraCover(TreeNode root) {
        int[] res = slove(root);
        return Math.min(res[1], res[2]);
    }
    public int[] slove(TreeNode root){
        if(root == null){
            return new int[]{0, 0, 99999};
        }
        int[] L = slove(root.left);
        int[] R = slove(root.right);
        int minL = Math.min(L[1], L[2]);
        int minR = Math.min(R[1], R[2]);
        
        int d0 = L[1] + R[1];
        int d1 = Math.min(L[2] + minR, R[2] + minL);
        int d2 = 1 + Math.min(L[0], minL) + Math.min(R[0], minR);
        return new int[]{d0, d1, d2};
    }

Time Complexity: O(N), where NN is the number of nodes in the given tree.
Space Complexity:O(H), where HH is the height of the given tree.


知识点--树的遍历

  1. 深度优先遍历
    • 前序遍历 Pre-Order Traversal
      指先访问根,然后访问子树的遍历方式
   // Do Something with root
    if (root->lchild != NULL)
        pre_order_traversal(root->lchild);
    if (root->rchild != NULL)
        pre_order_traversal(root->rchild);
  • 中序遍历 In-Order Traversal
    先访问左(右)子树,然后访问根,最后访问右(左)子树的遍历方式
 if (root->lchild != NULL)
        in_order_traversal(root->lchild);
    // Do Something with root
    if (root->rchild != NULL)
        in_order_traversal(root->rchild);
  • 后序遍历 Post-Order Traversal
    先访问子树,然后访问根的遍历方式
if (root->lchild != NULL)
        post_order_traversal(root->lchild);
    if (root->rchild != NULL)
        post_order_traversal(root->rchild);
    // Do Something with root
  1. 广度优先遍历
    又称按层次遍历, 算法借助队列实现。

LeetCode分类总结 - BST(搜索二叉树)

你可能感兴趣的:([Leetcode][BST]二分搜索子树相关题目汇总/分析/总结)