学习pytorch: 数据加载和处理

简介

结合官方tutorials和源码以及部分博客写出此文。

pytorch的数据加载和处理相对容易的多,常见的两种形式的导入:

  1. 一种是整个数据集都在一个文件夹下,内部再另附一个label文件,说明每个文件夹的状态,如这个数据库。这种存放数据的方式可能更适合在非分类问题上得到应用。
  2. 一种则是更适合使用在分类问题上,即把不同种类的数据分为不同的文件夹存放起来。其形式如下:

root/ants/xxx.png
root/ants/xxy.jpeg
root/ants/xxz.png
.
.
.
root/bees/123.jpg
root/bees/nsdf3.png
root/bees/asd932_.png

本文首先结合官方turorials介绍第一种方法,以了解其数据加载的原理;然后以代码形式简单介绍第二种方法。其中第二种方法和第一种方法的原理相同,其差别在于第二种方法运用了trochvision中提供的已写好的工具ImageFolder,因此实现起来更为简单。

第一种

Dataset class

torch.utils.data.Dataset是一个抽象类,用户想要加载自定义的数据只需要继承这个类,并且覆写其中的两个方法即可:

  1. __len__: 覆写这个方法使得len(dataset)可以返回整个数据集的大小
  2. __getitem__: 覆写这个方法使得dataset[i]可以返回数据集中第i个样本
  3. 不覆写这两个方法会直接返回错误,其源码如下:
    def __getitem__(self, index):
        raise NotImplementedError

    def __len__(self):
        raise NotImplementedError

这里我随便从网上下载了20张图像,10张小猫,10张小狗。为了省事儿(只是想验证下继承Dataset类是否好用),我没有给数据集增加标签文件,而是直接把1-10号定义为小猫,11-20号定义为小狗,这样会给__len____getitem__减小麻烦,其目录结构如下:

学习pytorch: 数据加载和处理_第1张图片
目录结构

建立的自定义类如下:

from torch.utils.data import DataLoader, Dataset
from skimage import io, transform
import matplotlib.pyplot as plt 
import os 
import torch
from torchvision import transforms
import numpy as np 

class AnimalData(Dataset):
    def __init__(self, root_dir, transform=None):
        self.root_dir = root_dir
        self.transform = transform
    
    def __len__(self):
        return 20

    def __getitem__(self, idx):
        filenames = os.listdir(self.root_dir)
        filename = filenames[idx]
        img = io.imread(os.path.join(self.root_dir, filename))
        # print filename[:-5]
        if (int(filename[:-5]) > 10):
            lable = np.array([0])
        else:
            lable = np.array([1])
        sample = {'image': img, 'lable':lable}
        
        if self.transform:
            sample = self.transform(sample)
        return sample

Transforms & Compose transforms

可以注意到上一节中AnimalData类中__init__中有个transform参数,这也是这一节中要讲清楚的问题。
从网上随便下载的图片必然大小不一,而cnn的结构却要求输入图像要有固定的大小;numpy中的图像通道定义为H, W, C,而pytorch中的通道定义为C, H, W; pytorch中输入数据需要将numpy array改为tensor类型;输入数据往往需要归一化,等等。
基于以上考虑,我们可以自定义一些Callable的类,然后作为trasform参数传递给上一节定义的dataset类。为了更加方便,torchvision.transforms.Compose提供了Compose类,可以一次性将我们自定义的callable类传递给dataset类,直接得到转换后的数据。
这里我直接copy了教程上的三个类:Rescale, RandomCrop, ToTensor,稍作改动,适应我的数据库。

class Rescale(object):
    """Rescale the image in a sample to a given size.

    Args:
        output_size (tuple or int): Desired output size. If tuple, output is
            matched to output_size. If int, smaller of image edges is matched
            to output_size keeping aspect ratio the same.
    """

    def __init__(self, output_size):
        assert isinstance(output_size, (int, tuple))
        self.output_size = output_size

    def __call__(self, sample):
        image, lable = sample['image'], sample['lable']

        h, w = image.shape[:2]
        if isinstance(self.output_size, int):
            if h > w:
                new_h, new_w = self.output_size * h / w, self.output_size
            else:
                new_h, new_w = self.output_size, self.output_size * w / h
        else:
            new_h, new_w = self.output_size

        new_h, new_w = int(new_h), int(new_w)

        img = transform.resize(image, (new_h, new_w))

        # h and w are swapped for lable because for images,
        # x and y axes are axis 1 and 0 respectively
        # lable = lable * [new_w / w, new_h / h]

        return {'image': img, 'lable': lable}

class RandomCrop(object):
    """Crop randomly the image in a sample.

    Args:
        output_size (tuple or int): Desired output size. If int, square crop
            is made.
    """

    def __init__(self, output_size):
        assert isinstance(output_size, (int, tuple))
        if isinstance(output_size, int):
            self.output_size = (output_size, output_size)
        else:
            assert len(output_size) == 2
            self.output_size = output_size

    def __call__(self, sample):
        image, lable = sample['image'], sample['lable']

        h, w = image.shape[:2]
        new_h, new_w = self.output_size

        top = np.random.randint(0, h - new_h)
        left = np.random.randint(0, w - new_w)

        image = image[top: top + new_h,
                      left: left + new_w]

        # lable = lable - [left, top]

        return {'image': image, 'lable': lable}

class ToTensor(object):
    """Convert ndarrays in sample to Tensors."""

    def __call__(self, sample):
        image, lable = sample['image'], sample['lable']
        # print lable
 
        # swap color axis because
        # numpy image: H x W x C
        # torch image: C X H X W
        image = image.transpose((2, 0, 1))
        return {'image': torch.from_numpy(image),
                'lable': torch.from_numpy(lable)}

定义好callable类之后,通过torchvision.transforms.Compose将上述三个类结合在一起,传递给AnimalData类中的transform参数即可。

trsm = transforms.Compose([Rescale(256),
                            RandomCrop(224),
                            ToTensor()])
data = AnimalData('./all', transform=trsm)

Iterating through the dataset

上一节中得到data实例之后可以通过for循环来一个一个读取数据,现在这是效率低下的。torch.utils.data.DadaLoader类解决了上述问题。其主要有如下特点:

  • Batching the data
  • Shuffling the data
  • Load the data in parallel using multiprocessing workers.

实现起来也很简单:

dataloader = DataLoader(data, batch_size=4, shuffle=True, num_workers=4)
for i_batch, bach_data in enumerate(dataloader):
    print i_batch 
    print bach_data['image'].size()
    print bach_data['lable']

第二种

torchvision

pytorch几乎将上述所有工作都封装起来供我们使用,其中一个工具就是torchvision.datasets.ImageFolder,用于加载用户自定义的数据,要求我们的数据要有如下结构:

root/ants/xxx.png
root/ants/xxy.jpeg
root/ants/xxz.png
.
.
.
root/bees/123.jpg
root/bees/nsdf3.png
root/bees/asd932_.png

torchvision.transforms中也封装了各种各样的数据处理的工具,如Resize, ToTensor等等功能供我们使用。
修改我下载的数据库结构如下:

学习pytorch: 数据加载和处理_第2张图片
method2_tree

加载数据代码如下:

from torchvision import transforms, utils
from torchvision import datasets
import torch
import matplotlib.pyplot as plt 

train_data = datasets.ImageFolder('./data1', transform=transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor()
]))

train_loader = torch.utils.data.DataLoader(train_data,
                                            batch_size=4,
                                            shuffle=True,
                                            )
                                            
print len(train_loader)
for i_batch, img in enumerate(train_loader):
    if i_batch == 0:
        print(img[1])
        fig = plt.figure()
        grid = utils.make_grid(img[0])
        plt.imshow(grid.numpy().transpose((1, 2, 0)))
        plt.show()
    break

结果图:


学习pytorch: 数据加载和处理_第3张图片
make_grid

附录

最后欣赏一段torchvision源码

# vision/torchvision/datasets/folder.py

import torch.utils.data as data

from PIL import Image
import os
import os.path

IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm']


def is_image_file(filename):
    """Checks if a file is an image.
    Args:
        filename (string): path to a file
    Returns:
        bool: True if the filename ends with a known image extension
    """
    filename_lower = filename.lower()
    return any(filename_lower.endswith(ext) for ext in IMG_EXTENSIONS)


def find_classes(dir):
    classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
    classes.sort()
    class_to_idx = {classes[i]: i for i in range(len(classes))}
    return classes, class_to_idx


def make_dataset(dir, class_to_idx):
    images = []
    dir = os.path.expanduser(dir)
    for target in sorted(os.listdir(dir)):
        d = os.path.join(dir, target)
        if not os.path.isdir(d):
            continue

        for root, _, fnames in sorted(os.walk(d)):
            for fname in sorted(fnames):
                if is_image_file(fname):
                    path = os.path.join(root, fname)
                    item = (path, class_to_idx[target])
                    images.append(item)

    return images


def pil_loader(path):
    # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
    with open(path, 'rb') as f:
        img = Image.open(f)
        return img.convert('RGB')


def accimage_loader(path):
    import accimage
    try:
        return accimage.Image(path)
    except IOError:
        # Potentially a decoding problem, fall back to PIL.Image
        return pil_loader(path)


def default_loader(path):
    from torchvision import get_image_backend
    if get_image_backend() == 'accimage':
        return accimage_loader(path)
    else:
        return pil_loader(path)


class ImageFolder(data.Dataset):
    """A generic data loader where the images are arranged in this way: ::
        root/dog/xxx.png
        root/dog/xxy.png
        root/dog/xxz.png
        root/cat/123.png
        root/cat/nsdf3.png
        root/cat/asd932_.png
    Args:
        root (string): Root directory path.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        loader (callable, optional): A function to load an image given its path.
     Attributes:
        classes (list): List of the class names.
        class_to_idx (dict): Dict with items (class_name, class_index).
        imgs (list): List of (image path, class_index) tuples
    """

    def __init__(self, root, transform=None, target_transform=None,
                 loader=default_loader):
        classes, class_to_idx = find_classes(root)
        imgs = make_dataset(root, class_to_idx)
        if len(imgs) == 0:
            raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n"
                               "Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))

        self.root = root
        self.imgs = imgs
        self.classes = classes
        self.class_to_idx = class_to_idx
        self.transform = transform
        self.target_transform = target_transform
        self.loader = loader

    def __getitem__(self, index):
        """
        Args:
            index (int): Index
        Returns:
            tuple: (image, target) where target is class_index of the target class.
        """
        path, target = self.imgs[index]
        img = self.loader(path)
        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        return len(self.imgs)

    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str

参考

[1]. Data Loading and Processing Tutorial
[2]. github: pytorch/torch/utils/data/dataset.py
[3]. github: vision/torchvision/datasets/folder.py
[4]. csdn

你可能感兴趣的:(学习pytorch: 数据加载和处理)