线性方程组与n维向量空间

线性方程组

一.消元法

​ 中学中经常使用的方法,相当于通过初等行变换将增广矩阵化为阶梯型矩阵,再来判断是否有解及解的结构是什么。略。


二.n维线性空间

  • n维向量:

    在所谓的数域P上一个n维向量就是由P中n个数组成的有序数组,称为向量的分量。其中

    称为行向量,称为列向量。

  • 向量的基本运算:

    • 向量相等
    • 向量的加,减,数量乘积,內积,转置。
      • ,正交
      • ,內积
    • 向量的交换律、结合律
    • 单位向量、零向量、负向量。
  • n维向量空间:

    以数域P中数作为分量的n维向量的全体,同时考虑到定义在他们上面的加法和数量乘法,称为数域P上的n维向量空间。


三.线性相关性

  • 线性组合(线性表示出):

    向量称为向量组的一个线性组合,如果有数域P中的数使得成立。

    • 任意n维向量都是单位向量的线性组合
    • 0向量是任意向量组的线性组合
  • 等价:

    两个向量组可以互相线性表出,这两个向量组等价。

    如向量组与,每一个可由线性表出,每一个都可由线性表出,则称这两个向量组等价。

    • 等价的相关性质:自返性、对称性、传递性(如何证明)

  • 线性相关:

    定义1:如果向量组,(t>=2)中存在一个向量可以由其他向量线性表示,则这组向量线性相关。

    定义2:向量组(t>=1)若存在数域P中不全为零的数,使得则称这组向量线性相关。

    • 含有0向量的向量组线性相关。
    • 线性无关的定义
    • 一组向量的部分向量线性相关,则这组向量一定线性相关。一组向量线性无关,则这组向量的任意非空的部分组也线性无关。
    • n维单位向量组线性无关。
    • 线性相关,表示方程组存在非零解,线性无关表示方程组只要零解。
    • n维向量组线性无关,那么在每一个向量上添加一维变成n+1维也线性无关(等价于方程组添加约束条件)。n维向量组线性相关,那么再添加一个n维向量,此向量组依然线性相关(等价于方程组添加未知数)
  • 线性相关有关的定理:
    • 设,与两个向量组,如果向量组可由向量组线性表示出,且r>s,那么向量组一定线性相关。(如何证明)
      • 推论1:如果可由线性表示出,且线性无关,那么s>=t.
      • 推论2:n+1个n维向量组一定线性相关。
      • 推论3:两个线性无关的等价向量组,必包含相同数量的向量。

  • 极大线性无关组:
    • 定义:一个向量组的部分组被称为极大线性无关组,如果这个部分组本身是线性无关的,如果从向量组任意选择一个向量添加进部分组,这个部分组变成线性相关的。
    • 任意一个极大线性无关组与向量组本身等价。线性无关向量组的极大线性无关组是其本身。
    • 一个向量组的任意两个极大线性无关组等价,且向量个数相同。
  • 向量组的秩:
    • 定义:向量组极大线性无关组所含有向量的个数称为向量组的秩。
    • 一个线性无关向量组的充分必要条件是它含有的向量组的个数与其秩相等。
    • 等价的向量组必要相同的秩。
    • 含有非零向量的向量组一定有极大线性无关组,秩为极大线性无关组的向量个数。全部为零的向量组没有极大线性无关组,秩为零。

四.线性方程组的有解判别定理

线性方程组与n维向量空间_第1张图片
快照16.png
线性方程组与n维向量空间_第2张图片
快照17.png
线性方程组与n维向量空间_第3张图片
快照18.png
线性方程组与n维向量空间_第4张图片
快照19.png
线性方程组与n维向量空间_第5张图片
快照20.png
线性方程组与n维向量空间_第6张图片
快照21.png
快照22.png

你可能感兴趣的:(线性方程组与n维向量空间)