原文: 不选择使用Lucene的6大原因
Lucene是开放源代码的全文搜索引擎工具包,凭借着其强劲的搜索功能和简单易用的实现,在国内已经很普及,甚至一度出现了言搜索必称Lucene的盛 景。上个月Lucene的开发团队发布了 Java Lucene 2.3.1 ,相信很多朋友们都用上了。在国内对Lucene的介绍可以分为3块儿:
1、Lucene的搜索算法不适用于网格计算;
下面是英文原文 Moving Lucene a step forward
6. No built-in support for clustering. If you want to create clusters, either write your own implementation of a Directory, or use Solr, or Nutch+Hadoop. Both Solr and Nutch leverage Lucene, but are not straight replacements. Lucene is embeddable, while you must leverage on Solr or Nutch. Well, I think it is not very surprising that Hadoop idea emerged from the Lucene team : Lucene doesn't scale out. It's internals makes it (very) fast for most common situations, but for large document sets, you have to scale out, and as Lucene does not implement clustering at the core level, you must switch from Lucene to another search engine layer, which is not straightforward. The problem with switching to Solr or Nutch is that you carry things you probably won't need : integrated crawling for Nutch and indexing server for Solr.
5. Span queries are slow. This may be interpreted as a problem specific to Lingway where we make intensive use of span queries (NEAR operator : "red NEAR car"), but the Lucene index structure has been updated to add this feature, which was not thought at first. The underlying implementation leads to complex algorithms that are very slow, especially when some term is repeated many times in a single large document. That's why I tend to say that Lucene is a high-performance text search engine only if you use basic boolean queries.
4. Scoring is not really pluggable. Lucene has its own implementation of a scoring algorithm, where terms may be boosted, and makes use of a Similarity class, but soon shows limitations when you want to perform complex scoring, for example based on actual matches and meta data about the query. If you want to do so, you'll have to extend the Lucene query classes. The facts is that Lucene has been thought in terms of tf/idf like scoring algorithms, while in our situation, for linguistic based scoring, the structure of Lucene scoring facilities don't fit. We've been obliged to override every Lucene query class in order to add support for our custom scoring. And that was a problem :
3. Lucene is not well designed. As a software architect, I would tend to make this reason 1. Lucene has a very poor OO design. Basically, you have packages, classes, but almost no design pattern usage. I always makes me think about an application written by C(++) developers who discover Java and carry bad practices among them. This is a serious point : whenever you have to customize Lucene to suit your needs (and you will have to do so), you'll have to face the problem. Here are some examples :
2. A closed API which makes extending Lucene a pain. In Lucene world, it is called a feature. The policy is to open classes when some user needs to gain access to some feature. This leads to an API where most classes are package protected, which means you won't ever be able to extend it (unless you create your class in the same package, which is quite dirty for custom code) or you'll have to copy and rewrite the code. Moreover, and it is quite related to the previous point, there's a serious lack of OO design here too : some classes which should have been inner are not, and anonymous classes are used for complex operations where you would typically need to override their behaviour. The reason invoked for closing the API is that the code has to be cleaned up and made stable before releasing it publicly. While the idea is honourable, once again it is a pain because if you have some code that does not fit in the mainstream Lucene idea, you'll have to constantly backport Lucene improvements to your version until your patch is accepted. However, as the developers want to limit API changes as long as possible, there's little chance that your patch will ever be commited. Add some final modifiers on either classes or methods and you'll face the problem. I don't think the Spring framework would have come so popular if the code had been so locked...
1. Lucene search algorithms are not adapted to grid computing. Lucene has been written when hardware did not have memory that much and multicore processors didn't exist. Therefore, the index structure has been thought and implemented in order to perform fast linear searches with a very little memory footprint. I've personally spent lots of hours trying to rewrite span query algorithms so that I could make use of a multithreaded context (for dual/quad core cpus), but the iterator-based directory reading algorithms make it hardly impossible to do so. In some rare cases you'll be able to optimize things and iterate the index in parallel, but in most situations it will be impossible. In our case, when we have a very complex query with 50+ embedded span queries, the CPU is almost not used while the system is constantly calling I/Os, even using a RAMDirectory.