-
回归模型的训练和应用
Python提供了方便我们访问所有模型参数的方法,因此只要使用相关方法即可。可以通过引入相关模块,并调用train方法中的help函数查看这些方法的具体细节:from pyspark.mllib.regression import LinearRegressionWithSGD from pyspark.mllib.tree import DecisionTree help(LinearRegressionWithSGD.train)
-
在 bike sharing 数据上训练回归模型
首先训练线性模型并测试该模型在训练数据上的预测效果linear_model = LinearRegressionWithSGD.train(data,iterations=10,step=0.1,intercept=False) true_vs_predicted = data.map(lambda p: (p.label, linear_model.predict(p.features))) >>> print "Linear Model predictions: " + str(true_vs_predicted.take(5)) Linear Model predictions: [(16.0, 117.89250386724846), (40.0, 116.2249612319211), (32.0, 116.02369145779235), (13.0, 115.67088016754433), (1.0, 115.56315650834317)]
在trainRegressor中使用默认参数来训练决策树模型(相当于深度为5的树)
dt_model = DecisionTree.trainRegressor(data_dt,{}) preds = dt_model.predict(data_dt.map(lambda p: p.features)) actual = data.map(lambda p: p.label) true_vs_predicted_dt = actual.zip(preds) >>> print "Decision Tree predictions: " + str(true_vs_predicted_dt.take(5)) Decision Tree predictions: [(16.0, 54.913223140495866), (40.0, 54.913223140495866), (32.0, 53.171052631578945), (13.0, 14.284023668639053), (1.0, 14.284023668639053)] >>> print "Decision Tree depth: " + str(dt_model.depth()) Decision Tree depth: 5 >>> print "Decision Tree number of nodes: " + str(dt_model.numNodes()) Decision Tree number of nodes: 63
-
评估回归模型的性能
#计算平方误差函数实现 def squared_error(actual, pred): return (pred - actual)**2 #计算平均绝对误差MAE def abs_error(actual, pred): return np.abs(pred - actual) #计算均方根对数误差RMSLE def squared_log_error(pred, actual): return (np.log(pred + 1) - np.log(actual + 1))**2
计算不同度量下的性能
-
线性模型
mse = true_vs_predicted.map(lambda (t, p): squared_error(t, p)).mean() mae = true_vs_predicted.map(lambda (t, p): abs_error(t, p)).mean() rmsle = np.sqrt(true_vs_predicted.map(lambda (t, p): squared_log_error(t, p)).mean()) >>> print "Linear Model - Mean Squared Error: %2.4f" % mse Linear Model - Mean Squared Error: 30679.4539 >>> print "Linear Model - Mean Absolute Error: %2.4f" % mae Linear Model - Mean Absolute Error: 130.6429 >>> print "Linear Model - Root Mean Squared Log Error: %2.4f" % rmsle Linear Model - Root Mean Squared Log Error: 1.4653
-
决策树
mse_dt = true_vs_predicted_dt.map(lambda (t, p): squared_error(t, p)).mean() mae_dt = true_vs_predicted_dt.map(lambda (t, p): abs_error(t, p)).mean() rmsle_dt = np.sqrt(true_vs_predicted_dt.map(lambda (t, p): squared_log_error(t, p)).mean()) >>> print "Decision Tree - Mean Squared Error: %2.4f" % mse_dt Decision Tree - Mean Squared Error: 11611.4860 >>> print "Decision Tree - Mean Absolute Error: %2.4f" % mae_dt Decision Tree - Mean Absolute Error: 71.1502 >>> print "Decision Tree - Root Mean Squared Log Error: %2.4f" % rmsle_dt Decision Tree - Root Mean Squared Log Error: 0.6251
改进模型性能和参数调优
变换目标变量
-
对数变换的影响
data_log = data.map(lambda lp: LabeledPoint(np.log(lp.label), lp.features)) model_log = LinearRegressionWithSGD.train(data_log, iterations=10, step=0.1) true_vs_predicted_log = data_log.map(lambda p:(np.exp(p.label),np.exp(model_log.predict(p.features)))) mse_log = true_vs_predicted_log.map(lambda (t, p): squared_error(t,p)).mean() mae_log = true_vs_predicted_log.map(lambda (t, p): abs_error(t, p)).mean() rmsle_log = np.sqrt(true_vs_predicted_log.map(lambda (t, p): squared_log_error(t, p)).mean()) >>> print "Mean Squared Error: %2.4f" % mse_log Mean Squared Error: 50685.5559 >>> print "Mean Absolue Error: %2.4f" % mae_log Mean Absolue Error: 155.2955 >>> print "Root Mean Squared Log Error: %2.4f" % rmsle_log Root Mean Squared Log Error: 1.5411 >>> print "Non log-transformed predictions:\n" + str(true_vs_predicted.take(3)) Non log-transformed predictions: [(16.0, 117.89250386724846), (40.0, 116.2249612319211), (32.0, 116.02369145779235)] >>> print "Log-transformed predictions:\n" + str(true_vs_predicted_log.take(3)) Log-transformed predictions: [(15.999999999999998, 28.080291845456212), (40.0, 26.959480191001763), (32.0, 26.654725629458021)]
-
下面对决策树模型做同样的分析:
data_dt_log = data_dt.map(lambda lp:LabeledPoint(np.log(lp.label), lp.features)) dt_model_log = DecisionTree.trainRegressor(data_dt_log,{}) preds_log = dt_model_log.predict(data_dt_log.map(lambda p:p.features)) actual_log = data_dt_log.map(lambda p: p.label) true_vs_predicted_dt_log = actual_log.zip(preds_log).map(lambda (t,p): (np.exp(t), np.exp(p))) mse_log_dt = true_vs_predicted_dt_log.map(lambda (t, p): squared_error(t, p)).mean() mae_log_dt = true_vs_predicted_dt_log.map(lambda (t, p): abs_error(t,p)).mean() rmsle_log_dt = np.sqrt(true_vs_predicted_dt_log.map(lambda (t, p):squared_log_error(t, p)).mean()) >>> print "Mean Squared Error: %2.4f" % mse_log_dt Mean Squared Error: 14781.5760 >>> print "Mean Absolue Error: %2.4f" % mae_log_dt Mean Absolue Error: 76.4131 >>> print "Root Mean Squared Log Error: %2.4f" % rmsle_log_dt Root Mean Squared Log Error: 0.6406 >>> print "Non log-transformed predictions:\n" + str(true_vs_predicted_dt.take(3)) Non log-transformed predictions: [(16.0, 54.913223140495866), (40.0, 54.913223140495866), (32.0, 53.171052631578945)] >>> print "Log-transformed predictions:\n" + str(true_vs_predicted_dt_log.take(3)) Log-transformed predictions: [(15.999999999999998, 37.530779787154508), (40.0, 37.530779787154508), (32.0, 7.2797070993907287)]
模型参数调优
-
创建训练集和测试集来评估参数
data_with_idx = data.zipWithIndex().map(lambda (k, v): (v, k)) test = data_with_idx.sample(False, 0.2, 42) train = data_with_idx.subtractByKey(test) train_data = train.map(lambda (idx, p): p) test_data = test.map(lambda (idx, p) : p) train_size = train_data.count() test_size = test_data.count() >>> print "Training data size: %d" % train_size Training data size: 13934 >>> print "Test data size: %d" % test_size Test data size: 3445 >>> print "Total data size: %d " % num_data Total data size: 17379 >>> print "Train + Test size : %d" % (train_size + test_size) Train + Test size : 17379 data_with_idx_dt = data_dt.zipWithIndex().map(lambda (k, v): (v, k)) test_dt = data_with_idx_dt.sample(False, 0.2, 42) train_dt = data_with_idx_dt.subtractByKey(test_dt) train_data_dt = train_dt.map(lambda (idx, p): p) test_data_dt = test_dt.map(lambda (idx, p) : p)
-
参数设置对线性模型的影响
def evaluate(train, test, iterations, step, regParam, regType, intercept): model = LinearRegressionWithSGD.train(train, iterations, step,regParam=regParam, regType=regType, intercept=intercept) tp = test.map(lambda p: (p.label, model.predict(p.features))) rmsle = np.sqrt(tp.map(lambda (t, p): squared_log_error(t, p)). mean()) return rmsle
-
迭代
params = [1, 5, 10, 20, 50, 100] metrics = [evaluate(train_data, test_data, param, 0.01, 0.0, 'l2', False) for param in params] >>> print params [1, 5, 10, 20, 50, 100] >>> print metrics [2.8779465130028195, 2.0390187660391499, 1.7761565324837876, 1.5828778102209107, 1.4382263191764473, 1.4050638054019446]
-
步长
params = [0.01, 0.025, 0.05, 0.1, 1.0] metrics = [evaluate(train_data, test_data, 10, param, 0.0, 'l2', False) for param in params] >>> print params [0.01, 0.025, 0.05, 0.1, 1.0] >>> print metrics [1.7761565324837874, 1.4379348243997032, 1.4189071944747715, 1.5027293911925559, nan]
-
L2正则化
params = [0.0, 0.01, 0.1, 1.0, 5.0, 10.0, 20.0] metrics = [evaluate(train_data, test_data, 10, 0.1, param, 'l2',False) for param in params] >>> print params [0.0, 0.01, 0.1, 1.0, 5.0, 10.0, 20.0] >>> print metrics [1.5027293911925559, 1.5020646031965639, 1.4961903335175231, 1.4479313176192781, 1.4113329999970989, 1.5379824584440471, 1.8279564444985841]
-
L1正则化
params = [0.0, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0] metrics = [evaluate(train_data, test_data, 10, 0.1, param, 'l1',False) for param in params] >>> params = [0.0, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0] >>> metrics = [evaluate(train_data, test_data, 10, 0.1, param, 'l1',False) for param in params] >>> print params [0.0, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0] >>> print metrics [1.5027293911925559, 1.5026938950690176, 1.5023761634555697, 1.499412856617814, 1.4713669769550108, 1.7596682962964314, 4.7551250073268614]
model_l1 = LinearRegressionWithSGD.train(train_data, 10, 0.1,regParam=1.0, regType='l1', intercept=False) model_l1_10 = LinearRegressionWithSGD.train(train_data, 10, 0.1,regParam=10.0, regType='l1', intercept=False) model_l1_100 = LinearRegressionWithSGD.train(train_data, 10, 0.1,regParam=100.0, regType='l1', intercept=False) >>> print "L1 (1.0) number of zero weights: " + str(sum(model_l1.weights.array == 0)) L1 (1.0) number of zero weights: 4 >>> print "L1 (10.0) number of zeros weights: " + str(sum(model_l1_10.weights.array == 0)) L1 (10.0) number of zeros weights: 33 >>> print "L1 (100.0) number of zeros weights: " + str(sum(model_l1_100.weights.array == 0)) L1 (100.0) number of zeros weights: 58
-
截距
线性模型最后可以设置的参数表示是否使用截距(intercept)。截距是添加到权重向量的常数项,可以有效地影响目标变量的中值。如果数据已经被归一化,截距则没有必要。但是理论上截距的使用并不会带来坏处。params = [False, True] metrics = [evaluate(train_data, test_data, 10, 0.1, 1.0, 'l2', param) for param in params] >>> print params [False, True] >>> print metrics [1.4479313176192781, 1.4798261513419801]
-
参数设置对决策树性能的影响
def evaluate_dt(train, test, maxDepth, maxBins): model = DecisionTree.trainRegressor(train, {}, impurity='variance', maxDepth=maxDepth, maxBins=maxBins) preds = model.predict(test.map(lambda p: p.features)) actual = test.map(lambda p: p.label) tp = actual.zip(preds) rmsle = np.sqrt(tp.map(lambda (t, p): squared_log_error(t, p)).mean()) return rmsle
-
树深度
params = [1, 2, 3, 4, 5, 10, 20] metrics = [evaluate_dt(train_data_dt, test_data_dt, param, 32) for param in params] >>> print params [1, 2, 3, 4, 5, 10, 20] >>> print metrics [1.0280339660196287, 0.92686672078778276, 0.81807794023407532, 0.74060228537329209, 0.63583503599563096, 0.42729311886162807, 0.45160118771289642]
-
最大划分数
params = [2, 4, 8, 16, 32, 64, 100] metrics = [evaluate_dt(train_data_dt, test_data_dt, 5, param) for param in params] >>> print params [2, 4, 8, 16, 32, 64, 100] >>> print metrics [1.3053120532822782, 0.81696140983649768, 0.75745322513058744, 0.61905245875374304, 0.63583503599563096, 0.63583503599563096, 0.63583503599563096]