参考 《Python 核心编程》(第三版)
一、Thread模板
缺点:
- 不支持守护线程:当主线程退出时,所有子线程都将终止,不管它们是否在工作。
- 同步原语少
#-*- coding: UTF - 8 - *-
import thread
from time import sleep, ctime
def loop0():
print 'start loop0 at:', ctime()
sleep(4)
print 'end loop0 at:', ctime()
def loop1():
print 'start loop1 at:', ctime()
sleep(2)
print 'end loop1 at;', ctime()
def main():
print 'all start at:', ctime()
thread.start_new_thread(loop0, ())#派生一个新线程
thread.start_new_thread(loop1, ())
sleep(6)
print 'all end at:', ctime()
if __name__ == '__main__':
main()
#-*- coding: UTF - 8 - *-
import thread
from time import sleep, ctime
loops = [4, 2]
def loop(nloop, nsec, lock):
print 'start loop', nloop, 'at:', ctime()
sleep(nsec)
print 'end loop', nloop, 'at:', ctime()
lock.release() # release():释放锁
def main():
print 'start at:', ctime()
locks = []
nloops = range(len(loops))
for i in nloops:
lock = thread.allocate_lock() # allocate_lock():分配锁对象
lock.acquire() # acquire():获得锁对象
locks.append(lock)
for i in nloops:
thread.start_new_thread(loop, (i, loops[i], locks[i]))
for i in nloops:
while locks[i].locked():
pass
print 'all end at:', ctime()
if __name__ == '__main__':
main()
二、threading模板
优点:
- 支持守护线程:如果把一个线程设置为守护线程,就表示这个线程是不重要的,进程退出时不需要等待这个线程执行完成
thread.daemon = True
Thread类
方案一:创建Thread实例,传给它一个函数
#-*- coding: UTF - 8 - *-
import threading
from time import sleep, ctime
loops = [4, 2]
def loop(nloop, nsec):
print 'start loop', nloop, 'at:', ctime()
sleep(nsec)
print 'end loop', nloop, 'at:', ctime()
def main():
print 'starting at:', ctime()
threads = []
nloops = range(len(loops))
for i in nloops:
t = threading.Thread(target=loop, args=(i, loops[i]))
threads.append(t)
for i in nloops:
threads[i].start()#start():开始执行该线程
for i in nloops:
threads[i].join()#join(timeout=None):直至启动的线程终止之前一直挂起。除非给出了timeout(秒),否则一直堵塞
print 'ending at:', ctime()
if __name__ == '__main__':
main()
方案二:创建Thread实例,传给它一个可调用的类实例
#-*- coding: UTF - 8 - *-
import threading
from time import sleep, ctime
loops = [4, 2]
class ThreadFunc(object):
def __init__(self, func, args, name=''):
self.name = name
self.func = func
self.args = args
def __call__(self):
self.func(*self.args)
def loop(nloop, nsec):
print 'start loop', nloop, 'at:', ctime()
sleep(nsec)
print 'end loop', nloop, 'at:', ctime()
def main():
print 'starting at:', ctime()
threads = []
nloops = range(len(loops))
for i in nloops:
t = threading.Thread(target=ThreadFunc(
loop, (i, loops[i]), loop.__name__))
threads.append(t)
for i in nloops:
threads[i].start() # start():开始执行该线程
for i in nloops:
# join(timeout=None):直至启动的线程终止之前一直挂起。除非给出了timeout(秒),否则一直堵塞
threads[i].join()
print 'ending at:', ctime()
if __name__ == '__main__':
main()
方案三:派生Thread的子类,并创建子类的实例
#-*- coding: UTF - 8 - *-
import threading
from time import sleep, ctime
loops = [4, 2]
class MyThread(threading.Thread):
def __init__(self, func, args, name=''):
threading.Thread.__init__(self)
self.name = name
self.func = func
self.args = args
def run(self): # run():定义线程功能的方法(通常在子类中被应用开发者重写)
self.func(*self.args)
def loop(nloop, nsec):
print 'start loop', nloop, 'at:', ctime()
sleep(nsec)
print 'end loop', nloop, 'at:', ctime()
def main():
print 'starting at:', ctime()
threads = []
nloops = range(len(loops))
for i in nloops:
t = MyThread(loop, (i, loops[i]), loop.__name__)
threads.append(t)
for i in nloops:
threads[i].start() # start():开始执行该线程
for i in nloops:
# join(timeout=None):直至启动的线程终止之前一直挂起。除非给出了timeout(秒),否则一直堵塞
threads[i].join()
print 'ending at:', ctime()
if __name__ == '__main__':
main()
修改上面的MyThread类(把结果保存在实例属性self.res中,并创建新方法getResult()来获取其值)>>>方便被导入
class MyThread(threading.Thread):
def __init__(self, func, args, name=''):
threading.Thread.__init__(self)
self.name = name
self.func = func
self.args = args
def getResult(self):
return self.res
def run(self):#run():定义线程功能的方法(通常在子类中被应用开发者重写)
self.res=self.func(*self.args)
同步源语:锁/互斥、信号量
一、锁:
原理:
当多线程争夺锁时,允许第一个获得锁的线程进入临界区,并执行代码。所有之后到达的线程将被堵塞,直到第一个线程执行结束,退出临界区,并释放锁。此时其他等待的线程可以获得锁并进入临界区。(被堵塞的线程是没有顺序的)
应用场景:
特殊的函数、代码块不希望(或不应该)被多个线程同时执行
- 修改数据库
- 更新文件
- ......
代码:
from threading import Lock
lock = Lock()
lock.acquire()#获取锁
lock.release()#释放锁
#上下文管理器
from __future__ import with_statement
with lock:
......#锁的线程块
二、信号量:
信号量是最古老的同步原语之一
threading模块包括两种信号量类:Semaphore和BoundedSemaphore(BoundedSemaphore额外功能:计数器永远不会超过初始值,可以防范其中信号量释放次数多于获得次数的异常用例)
原理:
它是一个计数器,当资源消耗(acquire)时,计数器值减1;当资源释放(release)时,计数器值加1
应用场景:
- 线程拥有有限资源
- ......
代码(糖果机):
#-*- coding: UTF - 8 - *-
from atexit import register
from random import randrange
from threading import BoundedSemaphore, Lock, Thread
from time import sleep, ctime
lock = Lock()
Max = 5
candytray = BoundedSemaphore(Max)
def refill():
lock.acquire()
print 'Refilling candy...'
try:
candytray.release()
except ValueError:
print 'full,skipping'
else:
print 'OK'
lock.release()
def buy():
lock.acquire()
print 'Buying candy...'
if candytray.acquire(False):
print 'OK'
else:
print 'empty,skipping'
lock.release()
def producer(loops):
for i in xrange(loops):
refill()
sleep(randrange(3))
def consumer(loops):
for i in xrange(loops):
buy()
sleep(randrange(3))
def _main():
print 'starting at:', ctime()
nloops = randrange(2, 6)
print 'THE CANDY MACHINE (full with %d bars)!' % Max
Thread(target=consumer, args=(randrange(nloops, nloops + Max + 2),)).start()
Thread(target=producer, args=(nloops,)).start()
@register
def _atexit():
print 'all DONE at:', ctime()
if __name__ == '__main__':
_main()
生产者-消费者问题(Queue/queue模块)
原理:
创建一个队列,生产者(线程)生产时放入商品,消费者(线程)消费时取出商品
应用场景:
生产者-消费者及类似情景【生产时间不确定,消费时间不确定】
代码:
#-*- coding: UTF - 8 - *-
from random import randint
from time import sleep
from Queue import Queue
from threading3 import MyThread
def writeQ(queue):
print 'producing object for Q...',
queue.put('xxx', 1)
print "size now", queue.qsize() # qsize():返回队列大小
def readQ(queue):
print 'consumed object from Q... size now', queue.qsize()
def writer(queue, loops):
for i in range(loops):
writeQ(queue)
sleep(randint(1, 3))
def reader(queue, loops):
for i in range(loops):
readQ(queue)
sleep(randint(2, 5))
funcs = [writer, reader]
nfuncs = range(len(funcs))
def main():
nloops = randint(2, 5)
# Queue(maxsize=0):创建一个先入先出的队列,如果给出最大值,则在队列没有空间时堵塞;否则(没有指定最大值),为无限队列。
q = Queue(32)
threads = []
for i in nfuncs:
t = MyThread(funcs[i], (q, nloops), funcs[i].__name__)
threads.append(t)
for i in nfuncs:
threads[i].start()
for i in nfuncs:
threads[i].join()
print 'all Done'
if __name__ == '__main__':
main()
concurrent.futures模块
优点:
- "任务"级别进行操作
- 不需要过分关注同步和线程/进程的管理
原理:
指定一个给定数量的线程池/进程池------提交任务------整理结果
代码:
#-*- coding: UTF - 8 - *-
from concurrent.futures import ThreadPoolExecutor#ThreadPoolExecutor-多线程,ProcessPoolExecutor-多进程
from re import compile
from time import ctime
from urllib.request import urlopen as uopen
REGEX = compile('#([\d,]+) in Books ')
AMZN = 'http://amazon.com/dp/'
ISBNS = {
'0132269937': 'Core Python Programming',
'0132356139': 'Python Web Development with Django',
'0137143419': 'Python Fundamentals',
}
def getRanking(isbn):
with uopen('{0}{1}'.format(AMZN, isbn)) as page:
return str(REGEX.findall(page.read())[0],'utf-8')
def _main():
print ('Start at', ctime(), 'on Amazon...')
with ThreadPoolExecutor(3) as executor:#ThreadPoolExecutor(n):n代表线程池个数
for isbn, ranking in zip(ISBNS, executor.map(getRanking, ISBNS)):
print ('- %r ranked - %s' % (ISBNS[isbn], ranking))
print('all Done at:', ctime())
if __name__ == '__main__':
_main()
实践
1、Amazon图书排行排名
#-*- coding: UTF - 8 - *-
from atexit import register#atexit.register()函数:告知脚本结束时间
from re import compile
from threading import Thread
from time import ctime
from urllib2 import urlopen as uopen
REGEX = compile('#([\d,]+) in Books ')
AMZN = 'http://amazon.com/dp/'
ISBNS = {
'0132269937':'Core Python Programming',
'0132356139':'Python Web Development with Django',
'0137143419':'Python Fundamentals',
}
def getRanking(isbn):
page = uopen('%s%s' % (AMZN,isbn))
data = page.read()
page.close()
return REGEX.findall(data)[0]
def _showRanking(isbn):#函数名前面的单划线--->特殊函数--->只能被本模块的代码使用,不能被其他使用本文件作为库或者工具模块的应用导入
print '- %r ranked %s' %(ISBNS[isbn],getRanking(isbn))
def _main():
print 'At',ctime(),'on Amazon......'
for isbn in ISBNS:
#单线程
# _showRanking(isbn)
#多线程
Thread(target=_showRanking,args=(isbn,)).start()
@register
def _atexit():
print 'all DONE at:',ctime()
if __name__=='__main__':
_main()