【转载】分组卷积(Group convolution)

https://blog.csdn.net/u012426298/article/details/80853553


Group convolution 分组卷积,最早在AlexNet中出现,由于当时的硬件资源有限,训练AlexNet时卷积操作不能全部放在同一个GPU处理,因此作者把feature maps分给多个GPU分别进行处理,最后把多个GPU的结果进行融合。

2.1 什么是分组卷积

在说明分组卷积之前我们用一张图来体会一下一般的卷积操作。 

【转载】分组卷积(Group convolution)_第1张图片

从上图可以看出,一般的卷积会对输入数据的整体一起做卷积操作,即输入数据:H1×W1×C1;而卷积核大小为h1×w1,一共有C2个,然后卷积得到的输出数据就是H2×W2×C2。这里我们假设输出和输出的分辨率是不变的。主要看这个过程是一气呵成的,这对于存储器的容量提出了更高的要求。 

但是分组卷积明显就没有那么多的参数。先用图片直观地感受一下分组卷积的过程。对于上面所说的同样的一个问题,分组卷积就如下图所示。 

【转载】分组卷积(Group convolution)_第2张图片

可以看到,图中将输入数据分成了2组(组数为g),需要注意的是,这种分组只是在深度上进行划分,即某几个通道编为一组,这个具体的数量由(C1/g)决定。因为输出数据的改变,相应的,卷积核也需要做出同样的改变。即每组中卷积核的深度也就变成了(C1/g),而卷积核的大小是不需要改变的,此时每组的卷积核的个数就变成了(C2/g)个,而不是原来的C2了。然后用每组的卷积核同它们对应组内的输入数据卷积,得到了输出数据以后,再用concatenate的方式组合起来,最终的输出数据的通道仍旧是C2。也就是说,分组数g决定以后,那么我们将并行的运算g个相同的卷积过程,每个过程里(每组),输入数据为H1×W1×C1/g,卷积核大小为h1×w1×C1/g,一共有C2/g个,输出数据为H2×W2×C2/g。

2.2 分组卷积具体的例子

从一个具体的例子来看,Group conv本身就极大地减少了参数。比如当输入通道为256,输出通道也为256,kernel size为3×3,不做Group conv参数为256×3×3×256。实施分组卷积时,若group为8,每个group的input channel和output channel均为32,参数为8×32×3×3×32,是原来的八分之一。而Group conv最后每一组输出的feature maps应该是以concatenate的方式组合。 

Alex认为group conv的方式能够增加 filter之间的对角相关性,而且能够减少训练参数,不容易过拟合,这类似于正则的效果。

你可能感兴趣的:(【转载】分组卷积(Group convolution))