简介
Gin 源码解读, 基于 v1.5.0 版本.
Context 初始化
Context 是 Gin 中很重要的一个部分, 先看一下注释是怎么说的.
// Context is the most important part of gin. It allows us to pass variables between middleware,
// manage the flow, validate the JSON of a request and render a JSON response for example.
type Context struct {
writermem responseWriter
Request *http.Request
Writer ResponseWriter
Params Params
handlers HandlersChain
index int8
fullPath string
engine *Engine
// Keys is a key/value pair exclusively for the context of each request.
Keys map[string]interface{}
// Errors is a list of errors attached to all the handlers/middlewares who used this context.
Errors errorMsgs
// Accepted defines a list of manually accepted formats for content negotiation.
Accepted []string
// queryCache use url.ParseQuery cached the param query result from c.Request.URL.Query()
queryCache url.Values
// formCache use url.ParseQuery cached PostForm contains the parsed form data from POST, PATCH,
// or PUT body parameters.
formCache url.Values
}
注释中说到, Context 用于中间件中的变量传递, 流程控制, 验证请求的 JSON 格式以及返回 JSON 响应等.
Context 是在每次接受请求的时候初始化的:
// ServeHTTP conforms to the http.Handler interface.
func (engine *Engine) ServeHTTP(w http.ResponseWriter, req *http.Request) {
c := engine.pool.Get().(*Context)
c.writermem.reset(w)
c.Request = req
c.reset()
engine.handleHTTPRequest(c)
engine.pool.Put(c)
}
里面用到了 sync.Pool
, sync.Pool
适用于缓存已分配但未使用的 items, 以便后续重用, 并减轻垃圾回收的压力.
type Pool struct {
// New optionally specifies a function to generate
// a value when Get would otherwise return nil.
// It may not be changed concurrently with calls to Get.
New func() interface{}
// contains filtered or unexported fields
}
sync.Pool
需要实现一个名为 New
的方法, 这其实在初始化 Engine
的时候就已经完成了.
// New returns a new blank Engine instance without any middleware attached.
// By default the configuration is:
// - RedirectTrailingSlash: true
// - RedirectFixedPath: false
// - HandleMethodNotAllowed: false
// - ForwardedByClientIP: true
// - UseRawPath: false
// - UnescapePathValues: true
func New() *Engine {
debugPrintWARNINGNew()
engine := &Engine{
RouterGroup: RouterGroup{
Handlers: nil,
basePath: "/",
root: true,
},
FuncMap: template.FuncMap{},
RedirectTrailingSlash: true,
RedirectFixedPath: false,
HandleMethodNotAllowed: false,
ForwardedByClientIP: true,
AppEngine: defaultAppEngine,
UseRawPath: false,
UnescapePathValues: true,
MaxMultipartMemory: defaultMultipartMemory,
trees: make(methodTrees, 0, 9),
delims: render.Delims{Left: "{{", Right: "}}"},
secureJsonPrefix: "while(1);",
}
engine.RouterGroup.engine = engine
engine.pool.New = func() interface{} {
return engine.allocateContext()
}
return engine
}
func (engine *Engine) allocateContext() *Context {
return &Context{engine: engine}
}
由此, 我们已经知道了 Context
是如何初始化的了.
Context 之请求参数获取
Context 肩负着很重要的使命, 所有的处理函数的唯一参数就是 Context.
// HandlerFunc defines the handler used by gin middleware as return value.
type HandlerFunc func(*Context)
在探究中间件的原理时, 我们已经看过了流程控制, 即 context.Next()
方法:
// Next should be used only inside middleware.
// It executes the pending handlers in the chain inside the calling handler.
// See example in GitHub.
func (c *Context) Next() {
c.index++
for c.index < int8(len(c.handlers)) {
c.handlers[c.index](c)
c.index++
}
}
接着看一下如何获取请求参数, 比如 URL 中的参数, GET 中的 query, 或者是 POST 中的 data.
// However, this one will match /user/john/ and also /user/john/send
// If no other routers match /user/john, it will redirect to /user/john/
router.GET("/user/:name/*action", func(c *gin.Context) {
name := c.Param("name")
action := c.Param("action")
message := name + " is " + action
c.String(http.StatusOK, message)
})
// Query string parameters are parsed using the existing underlying request object.
// The request responds to a url matching: /welcome?firstname=Jane&lastname=Doe
router.GET("/welcome", func(c *gin.Context) {
firstname := c.DefaultQuery("firstname", "Guest")
lastname := c.Query("lastname") // shortcut for c.Request.URL.Query().Get("lastname")
c.String(http.StatusOK, "Hello %s %s", firstname, lastname)
})
router.POST("/form_post", func(c *gin.Context) {
message := c.PostForm("message")
nick := c.DefaultPostForm("nick", "anonymous")
c.JSON(200, gin.H{
"status": "posted",
"message": message,
"nick": nick,
})
})
router.POST("/post", func(c *gin.Context) {
ids := c.QueryMap("ids")
names := c.PostFormMap("names")
fmt.Printf("ids: %v; names: %v", ids, names)
})
上面的示例来自官方文档, 看一下其中涉及到的方法是如何实现的.
func (c *Context) Param(key string) string {
return c.Params.ByName(key)
}
func (c *Context) Query(key string) string {
value, _ := c.GetQuery(key)
return value
}
func (c *Context) DefaultQuery(key, defaultValue string) string {
if value, ok := c.GetQuery(key); ok {
return value
}
return defaultValue
}
func (c *Context) GetQuery(key string) (string, bool) {
if values, ok := c.GetQueryArray(key); ok {
return values[0], ok
}
return "", false
}
func (c *Context) getQueryCache() {
if c.queryCache == nil {
c.queryCache = c.Request.URL.Query()
}
}
func (c *Context) GetQueryArray(key string) ([]string, bool) {
c.getQueryCache()
if values, ok := c.queryCache[key]; ok && len(values) > 0 {
return values, true
}
return []string{}, false
}
func (c *Context) PostForm(key string) string {
value, _ := c.GetPostForm(key)
return value
}
func (c *Context) DefaultPostForm(key, defaultValue string) string {
if value, ok := c.GetPostForm(key); ok {
return value
}
return defaultValue
}
func (c *Context) GetPostForm(key string) (string, bool) {
if values, ok := c.GetPostFormArray(key); ok {
return values[0], ok
}
return "", false
}
func (c *Context) PostFormArray(key string) []string {
values, _ := c.GetPostFormArray(key)
return values
}
func (c *Context) getFormCache() {
if c.formCache == nil {
c.formCache = make(url.Values)
req := c.Request
if err := req.ParseMultipartForm(c.engine.MaxMultipartMemory); err != nil {
if err != http.ErrNotMultipart {
debugPrint("error on parse multipart form array: %v", err)
}
}
c.formCache = req.PostForm
}
}
func (c *Context) GetPostFormArray(key string) ([]string, bool) {
c.getFormCache()
if values := c.formCache[key]; len(values) > 0 {
return values, true
}
return []string{}, false
}
从上面的代码可以看出 GetQueryArray
和 GetPostFormArray
的实现非常相似, 都使用内部缓存.
func (c *Context) QueryMap(key string) map[string]string {
dicts, _ := c.GetQueryMap(key)
return dicts
}
func (c *Context) GetQueryMap(key string) (map[string]string, bool) {
c.getQueryCache()
return c.get(c.queryCache, key)
}
func (c *Context) PostFormMap(key string) map[string]string {
dicts, _ := c.GetPostFormMap(key)
return dicts
}
func (c *Context) GetPostFormMap(key string) (map[string]string, bool) {
c.getFormCache()
return c.get(c.formCache, key)
}
// get is an internal method and returns a map which satisfy conditions.
func (c *Context) get(m map[string][]string, key string) (map[string]string, bool) {
dicts := make(map[string]string)
exist := false
for k, v := range m {
if i := strings.IndexByte(k, '['); i >= 1 && k[0:i] == key {
if j := strings.IndexByte(k[i+1:], ']'); j >= 1 {
exist = true
dicts[k[i+1:][:j]] = v[0]
}
}
}
return dicts, exist
}
上面的代码实现了参数的 map 化, 可以看下具体的请求参数, 下面的例子中 ids 就是一个 map, 它有两个 key.
POST /post?ids[a]=1234&ids[b]=hello HTTP/1.1
Content-Type: application/x-www-form-urlencoded
names[first]=thinkerou&names[second]=tianou
这不是 HTTP 中定义的内容, 使用的时候必须遵从这种规范, 可能在特定的场景下比较有用.
但一般不太会这么使用, 因为如果是公开的 API, 则其他语言都要实现这种类型的解析.
解析的代码倒是没有什么特别的,
再看一下文件类型的如何实现的, 即 FormFile
.
// FormFile returns the first file for the provided form key.
func (c *Context) FormFile(name string) (*multipart.FileHeader, error) {
if c.Request.MultipartForm == nil {
if err := c.Request.ParseMultipartForm(c.engine.MaxMultipartMemory); err != nil {
return nil, err
}
}
f, fh, err := c.Request.FormFile(name)
if err != nil {
return nil, err
}
f.Close()
return fh, err
}
// MultipartForm is the parsed multipart form, including file uploads.
func (c *Context) MultipartForm() (*multipart.Form, error) {
err := c.Request.ParseMultipartForm(c.engine.MaxMultipartMemory)
return c.Request.MultipartForm, err
}
// SaveUploadedFile uploads the form file to specific dst.
func (c *Context) SaveUploadedFile(file *multipart.FileHeader, dst string) error {
src, err := file.Open()
if err != nil {
return err
}
defer src.Close()
out, err := os.Create(dst)
if err != nil {
return err
}
defer out.Close()
_, err = io.Copy(out, src)
return err
}
稍微包装了一下 c.Request.MultipartForm
, 对于单个文件而言更方便些, 保存文件的方法也有了.
Context 之模型绑定和验证
模型绑定是一个非常有用的能力, 尤其是和验证结合在一起. 处理请求参数时, 一大重点就是验证.
Gin 支持两种类型的绑定, Must bind
和 Should bind
. 请求类型则支持 JSON, XML, YAML 和标准表单绑定.
先来看一下 Must bind
:
// Bind checks the Content-Type to select a binding engine automatically,
// Depending the "Content-Type" header different bindings are used:
// "application/json" --> JSON binding
// "application/xml" --> XML binding
// otherwise --> returns an error.
// It parses the request's body as JSON if Content-Type == "application/json" using JSON or XML as a JSON input.
// It decodes the json payload into the struct specified as a pointer.
// It writes a 400 error and sets Content-Type header "text/plain" in the response if input is not valid.
func (c *Context) Bind(obj interface{}) error {
b := binding.Default(c.Request.Method, c.ContentType())
return c.MustBindWith(obj, b)
}
// BindJSON is a shortcut for c.MustBindWith(obj, binding.JSON).
func (c *Context) BindJSON(obj interface{}) error {
return c.MustBindWith(obj, binding.JSON)
}
// BindXML is a shortcut for c.MustBindWith(obj, binding.BindXML).
func (c *Context) BindXML(obj interface{}) error {
return c.MustBindWith(obj, binding.XML)
}
// BindQuery is a shortcut for c.MustBindWith(obj, binding.Query).
func (c *Context) BindQuery(obj interface{}) error {
return c.MustBindWith(obj, binding.Query)
}
// BindYAML is a shortcut for c.MustBindWith(obj, binding.YAML).
func (c *Context) BindYAML(obj interface{}) error {
return c.MustBindWith(obj, binding.YAML)
}
// BindHeader is a shortcut for c.MustBindWith(obj, binding.Header).
func (c *Context) BindHeader(obj interface{}) error {
return c.MustBindWith(obj, binding.Header)
}
// BindUri binds the passed struct pointer using binding.Uri.
// It will abort the request with HTTP 400 if any error occurs.
func (c *Context) BindUri(obj interface{}) error {
if err := c.ShouldBindUri(obj); err != nil {
c.AbortWithError(http.StatusBadRequest, err).SetType(ErrorTypeBind) // nolint: errcheck
return err
}
return nil
}
// MustBindWith binds the passed struct pointer using the specified binding engine.
// It will abort the request with HTTP 400 if any error occurs.
// See the binding package.
func (c *Context) MustBindWith(obj interface{}, b binding.Binding) error {
if err := c.ShouldBindWith(obj, b); err != nil {
c.AbortWithError(http.StatusBadRequest, err).SetType(ErrorTypeBind) // nolint: errcheck
return err
}
return nil
}
从上面的代码可以发现, MustBindWith
其实是 ShouldBindWith
的包装, 具体内容还是要看 ShouldBindWith
.
另一点是绑定支持多种数据类型, 比如 BindQuery, BindHeader, BindUri.
// ShouldBindWith binds the passed struct pointer using the specified binding engine.
// See the binding package.
func (c *Context) ShouldBindWith(obj interface{}, b binding.Binding) error {
return b.Bind(c.Request, obj)
}
但实际上 ShouldBindWith
也只是调用了 binding.Binding
上的方法而言.
// Binding describes the interface which needs to be implemented for binding the
// data present in the request such as JSON request body, query parameters or
// the form POST.
type Binding interface {
Name() string
Bind(*http.Request, interface{}) error
}
// BindingBody adds BindBody method to Binding. BindBody is similar with Bind,
// but it reads the body from supplied bytes instead of req.Body.
type BindingBody interface {
Binding
BindBody([]byte, interface{}) error
}
// BindingUri adds BindUri method to Binding. BindUri is similar with Bind,
// but it read the Params.
type BindingUri interface {
Name() string
BindUri(map[string][]string, interface{}) error
}
// These implement the Binding interface and can be used to bind the data
// present in the request to struct instances.
var (
JSON = jsonBinding{}
XML = xmlBinding{}
Form = formBinding{}
Query = queryBinding{}
FormPost = formPostBinding{}
FormMultipart = formMultipartBinding{}
ProtoBuf = protobufBinding{}
MsgPack = msgpackBinding{}
YAML = yamlBinding{}
Uri = uriBinding{}
Header = headerBinding{}
)
上面的代码显示了 Binding
接口, 以及实现了 Binding
接口的类型, 具体以 JSON 为例, 看一下 jsonBinding
是如何实现的.
package binding
import (
"bytes"
"fmt"
"io"
"net/http"
"github.com/gin-gonic/gin/internal/json"
)
// EnableDecoderUseNumber is used to call the UseNumber method on the JSON
// Decoder instance. UseNumber causes the Decoder to unmarshal a number into an
// interface{} as a Number instead of as a float64.
var EnableDecoderUseNumber = false
// EnableDecoderDisallowUnknownFields is used to call the DisallowUnknownFields method
// on the JSON Decoder instance. DisallowUnknownFields causes the Decoder to
// return an error when the destination is a struct and the input contains object
// keys which do not match any non-ignored, exported fields in the destination.
var EnableDecoderDisallowUnknownFields = false
type jsonBinding struct{}
func (jsonBinding) Name() string {
return "json"
}
func (jsonBinding) Bind(req *http.Request, obj interface{}) error {
if req == nil || req.Body == nil {
return fmt.Errorf("invalid request")
}
return decodeJSON(req.Body, obj)
}
func (jsonBinding) BindBody(body []byte, obj interface{}) error {
return decodeJSON(bytes.NewReader(body), obj)
}
func decodeJSON(r io.Reader, obj interface{}) error {
decoder := json.NewDecoder(r)
if EnableDecoderUseNumber {
decoder.UseNumber()
}
if EnableDecoderDisallowUnknownFields {
decoder.DisallowUnknownFields()
}
if err := decoder.Decode(obj); err != nil {
return err
}
return validate(obj)
}
代码也不长, 内部用了自定义的 json 接口, 以便实现可替换的 JSON 编解码.
解码的最后一步是验证, 调用了 validate
函数:
func validate(obj interface{}) error {
if Validator == nil {
return nil
}
return Validator.ValidateStruct(obj)
}
由此, 可以引申到验证方面, 看一下是如何结合验证的.
// StructValidator is the minimal interface which needs to be implemented in
// order for it to be used as the validator engine for ensuring the correctness
// of the request. Gin provides a default implementation for this using
// https://github.com/go-playground/validator/tree/v8.18.2.
type StructValidator interface {
// ValidateStruct can receive any kind of type and it should never panic, even if the configuration is not right.
// If the received type is not a struct, any validation should be skipped and nil must be returned.
// If the received type is a struct or pointer to a struct, the validation should be performed.
// If the struct is not valid or the validation itself fails, a descriptive error should be returned.
// Otherwise nil must be returned.
ValidateStruct(interface{}) error
// Engine returns the underlying validator engine which powers the
// StructValidator implementation.
Engine() interface{}
}
// Validator is the default validator which implements the StructValidator
// interface. It uses https://github.com/go-playground/validator/tree/v8.18.2
// under the hood.
var Validator StructValidator = &defaultValidator{}
验证器需要实现 StructValidator
接口, 看一下默认的验证器的实现.
package binding
import (
"reflect"
"sync"
"gopkg.in/go-playground/validator.v9"
)
type defaultValidator struct {
once sync.Once
validate *validator.Validate
}
var _ StructValidator = &defaultValidator{}
// ValidateStruct receives any kind of type, but only performed struct or pointer to struct type.
func (v *defaultValidator) ValidateStruct(obj interface{}) error {
value := reflect.ValueOf(obj)
valueType := value.Kind()
if valueType == reflect.Ptr {
valueType = value.Elem().Kind()
}
if valueType == reflect.Struct {
v.lazyinit()
if err := v.validate.Struct(obj); err != nil {
return err
}
}
return nil
}
// Engine returns the underlying validator engine which powers the default
// Validator instance. This is useful if you want to register custom validations
// or struct level validations. See validator GoDoc for more info -
// https://godoc.org/gopkg.in/go-playground/validator.v8
func (v *defaultValidator) Engine() interface{} {
v.lazyinit()
return v.validate
}
func (v *defaultValidator) lazyinit() {
v.once.Do(func() {
v.validate = validator.New()
v.validate.SetTagName("binding")
})
}
默认的验证器是 validator.v9
, 使用了懒初始化, 以及使用 reflect
判断数据类型, 只验证结构体.
Context 之响应
看完了请求参数的获取和模型绑定之后, 来看看响应是如何发送的.
先来看一下 Context 中用到的 responseWriter
类型和 ResponseWriter
类型.
type Context struct {
writermem responseWriter
Request *http.Request
Writer ResponseWriter
// ResponseWriter ...
type ResponseWriter interface {
http.ResponseWriter
http.Hijacker
http.Flusher
http.CloseNotifier
// Returns the HTTP response status code of the current request.
Status() int
// Returns the number of bytes already written into the response http body.
// See Written()
Size() int
// Writes the string into the response body.
WriteString(string) (int, error)
// Returns true if the response body was already written.
Written() bool
// Forces to write the http header (status code + headers).
WriteHeaderNow()
// get the http.Pusher for server push
Pusher() http.Pusher
}
type responseWriter struct {
http.ResponseWriter
size int
status int
}
var _ ResponseWriter = &responseWriter{}
ResponseWriter
接口组合了 http
包中用于响应的数据结构, 所有的方法上都有注释.
而 responseWriter
实际上就是实现了 ResponseWriter
接口的结构体.
在继续之前, 先来了解下 Context 中 writermem 的作用.Writer
是用于写入响应的, 而从 writermem
名字的后缀, 可以推断出这和内存有关.
再寻找一下它的用处.
// ServeHTTP conforms to the http.Handler interface.
func (engine *Engine) ServeHTTP(w http.ResponseWriter, req *http.Request) {
c := engine.pool.Get().(*Context)
c.writermem.reset(w)
c.Request = req
c.reset()
engine.handleHTTPRequest(c)
engine.pool.Put(c)
}
func (c *Context) reset() {
c.Writer = &c.writermem
...
}
func (w *responseWriter) reset(writer http.ResponseWriter) {
w.ResponseWriter = writer
w.size = noWritten
w.status = defaultStatus
}
所以, 可以推断出 writermem
是每次请求时 w http.ResponseWriter
的拥有者, 而 c.Writer
是它的指针.
继续看 Context 是如何处理响应的.
func (c *Context) requestHeader(key string) string {
return c.Request.Header.Get(key)
}
// Status sets the HTTP response code.
func (c *Context) Status(code int) {
c.Writer.WriteHeader(code)
}
// Header is a intelligent shortcut for c.Writer.Header().Set(key, value).
// It writes a header in the response.
// If value == "", this method removes the header `c.Writer.Header().Del(key)`
func (c *Context) Header(key, value string) {
if value == "" {
c.Writer.Header().Del(key)
return
}
c.Writer.Header().Set(key, value)
}
// GetHeader returns value from request headers.
func (c *Context) GetHeader(key string) string {
return c.requestHeader(key)
}
上面是和 Header 有关的部分, 实际上是内部的 Writer.Header()
的代理.
接着看和 Cookie 有关的部分:
// SetCookie adds a Set-Cookie header to the ResponseWriter's headers.
// The provided cookie must have a valid Name. Invalid cookies may be
// silently dropped.
func (c *Context) SetCookie(name, value string, maxAge int, path, domain string, secure, httpOnly bool) {
if path == "" {
path = "/"
}
http.SetCookie(c.Writer, &http.Cookie{
Name: name,
Value: url.QueryEscape(value),
MaxAge: maxAge,
Path: path,
Domain: domain,
Secure: secure,
HttpOnly: httpOnly,
})
}
// Cookie returns the named cookie provided in the request or
// ErrNoCookie if not found. And return the named cookie is unescaped.
// If multiple cookies match the given name, only one cookie will
// be returned.
func (c *Context) Cookie(name string) (string, error) {
cookie, err := c.Request.Cookie(name)
if err != nil {
return "", err
}
val, _ := url.QueryUnescape(cookie.Value)
return val, nil
}
整合了 Cookie 的读取与设置.
看完 Header 和 Cookie 之后, 接下来就是重点了, 看一下如何渲染内容, 即返回的响应.
Gin 支持 XML, JSON, YAML and ProtoBuf rendering
, 看一下具体的实现方式.
// Render writes the response headers and calls render.Render to render data.
func (c *Context) Render(code int, r render.Render) {
c.Status(code)
if !bodyAllowedForStatus(code) {
r.WriteContentType(c.Writer)
c.Writer.WriteHeaderNow()
return
}
if err := r.Render(c.Writer); err != nil {
panic(err)
}
}
主要的方法就是 Render
, 而内部使用了 render.Render
接口中的 Render
方法.
// HTML renders the HTTP template specified by its file name.
// It also updates the HTTP code and sets the Content-Type as "text/html".
// See http://golang.org/doc/articles/wiki/
func (c *Context) HTML(code int, name string, obj interface{}) {
instance := c.engine.HTMLRender.Instance(name, obj)
c.Render(code, instance)
}
// IndentedJSON serializes the given struct as pretty JSON (indented + endlines) into the response body.
// It also sets the Content-Type as "application/json".
// WARNING: we recommend to use this only for development purposes since printing pretty JSON is
// more CPU and bandwidth consuming. Use Context.JSON() instead.
func (c *Context) IndentedJSON(code int, obj interface{}) {
c.Render(code, render.IndentedJSON{Data: obj})
}
// SecureJSON serializes the given struct as Secure JSON into the response body.
// Default prepends "while(1)," to response body if the given struct is array values.
// It also sets the Content-Type as "application/json".
func (c *Context) SecureJSON(code int, obj interface{}) {
c.Render(code, render.SecureJSON{Prefix: c.engine.secureJsonPrefix, Data: obj})
}
// JSONP serializes the given struct as JSON into the response body.
// It add padding to response body to request data from a server residing in a different domain than the client.
// It also sets the Content-Type as "application/javascript".
func (c *Context) JSONP(code int, obj interface{}) {
callback := c.DefaultQuery("callback", "")
if callback == "" {
c.Render(code, render.JSON{Data: obj})
return
}
c.Render(code, render.JsonpJSON{Callback: callback, Data: obj})
}
// JSON serializes the given struct as JSON into the response body.
// It also sets the Content-Type as "application/json".
func (c *Context) JSON(code int, obj interface{}) {
c.Render(code, render.JSON{Data: obj})
}
// AsciiJSON serializes the given struct as JSON into the response body with unicode to ASCII string.
// It also sets the Content-Type as "application/json".
func (c *Context) AsciiJSON(code int, obj interface{}) {
c.Render(code, render.AsciiJSON{Data: obj})
}
// PureJSON serializes the given struct as JSON into the response body.
// PureJSON, unlike JSON, does not replace special html characters with their unicode entities.
func (c *Context) PureJSON(code int, obj interface{}) {
c.Render(code, render.PureJSON{Data: obj})
}
// XML serializes the given struct as XML into the response body.
// It also sets the Content-Type as "application/xml".
func (c *Context) XML(code int, obj interface{}) {
c.Render(code, render.XML{Data: obj})
}
// YAML serializes the given struct as YAML into the response body.
func (c *Context) YAML(code int, obj interface{}) {
c.Render(code, render.YAML{Data: obj})
}
// ProtoBuf serializes the given struct as ProtoBuf into the response body.
func (c *Context) ProtoBuf(code int, obj interface{}) {
c.Render(code, render.ProtoBuf{Data: obj})
}
// String writes the given string into the response body.
func (c *Context) String(code int, format string, values ...interface{}) {
c.Render(code, render.String{Format: format, Data: values})
}
// Redirect returns a HTTP redirect to the specific location.
func (c *Context) Redirect(code int, location string) {
c.Render(-1, render.Redirect{
Code: code,
Location: location,
Request: c.Request,
})
}
// Data writes some data into the body stream and updates the HTTP code.
func (c *Context) Data(code int, contentType string, data []byte) {
c.Render(code, render.Data{
ContentType: contentType,
Data: data,
})
}
// DataFromReader writes the specified reader into the body stream and updates the HTTP code.
func (c *Context) DataFromReader(code int, contentLength int64, contentType string, reader io.Reader, extraHeaders map[string]string) {
c.Render(code, render.Reader{
Headers: extraHeaders,
ContentType: contentType,
ContentLength: contentLength,
Reader: reader,
})
}
看一下这些迥异的 render.Render
接口的实现者.
package render
import "net/http"
// Render interface is to be implemented by JSON, XML, HTML, YAML and so on.
type Render interface {
// Render writes data with custom ContentType.
Render(http.ResponseWriter) error
// WriteContentType writes custom ContentType.
WriteContentType(w http.ResponseWriter)
}
var (
_ Render = JSON{}
_ Render = IndentedJSON{}
_ Render = SecureJSON{}
_ Render = JsonpJSON{}
_ Render = XML{}
_ Render = String{}
_ Render = Redirect{}
_ Render = Data{}
_ Render = HTML{}
_ HTMLRender = HTMLDebug{}
_ HTMLRender = HTMLProduction{}
_ Render = YAML{}
_ Render = MsgPack{}
_ Render = Reader{}
_ Render = AsciiJSON{}
_ Render = ProtoBuf{}
)
func writeContentType(w http.ResponseWriter, value []string) {
header := w.Header()
if val := header["Content-Type"]; len(val) == 0 {
header["Content-Type"] = value
}
}
上面是 Render
接口的定义, 主要需要实现 Render
方法.WriteContentType
方法实际上已经被 writeContentType
函数实现得差不多了,
只是每种渲染方式对应的 Content-Type
值不同.
以 JSON 为例, 看一下具体是如何实现的.
// JSON contains the given interface object.
type JSON struct {
Data interface{}
}
var jsonContentType = []string{"application/json; charset=utf-8"}
// Render (JSON) writes data with custom ContentType.
func (r JSON) Render(w http.ResponseWriter) (err error) {
if err = WriteJSON(w, r.Data); err != nil {
panic(err)
}
return
}
// WriteContentType (JSON) writes JSON ContentType.
func (r JSON) WriteContentType(w http.ResponseWriter) {
writeContentType(w, jsonContentType)
}
// WriteJSON marshals the given interface object and writes it with custom ContentType.
func WriteJSON(w http.ResponseWriter, obj interface{}) error {
writeContentType(w, jsonContentType)
encoder := json.NewEncoder(w)
err := encoder.Encode(&obj)
return err
}
看上去非常简洁, 实现也不复杂.
Render
和 Binding
非常相似, 都是通过定义接口, 然后用不同的结构体实现具体的功能.
Context 之高级响应
// File writes the specified file into the body stream in a efficient way.
func (c *Context) File(filepath string) {
http.ServeFile(c.Writer, c.Request, filepath)
}
// FileAttachment writes the specified file into the body stream in an efficient way
// On the client side, the file will typically be downloaded with the given filename
func (c *Context) FileAttachment(filepath, filename string) {
c.Writer.Header().Set("content-disposition", fmt.Sprintf("attachment; filename=\"%s\"", filename))
http.ServeFile(c.Writer, c.Request, filepath)
}
托管静态文件, 使用的是 http.ServeFile
, 也实现了附件下载的功能, 还是挺方便的,
虽然只是 content-disposition
这个 Header 的功能.
// SSEvent writes a Server-Sent Event into the body stream.
func (c *Context) SSEvent(name string, message interface{}) {
c.Render(-1, sse.Event{
Event: name,
Data: message,
})
}
SSEvent
实现了服务端推送事件的功能, 具体看一下它的实现.
package sse
import (
"encoding/json"
"fmt"
"io"
"net/http"
"reflect"
"strconv"
"strings"
)
// Server-Sent Events
// W3C Working Draft 29 October 2009
// http://www.w3.org/TR/2009/WD-eventsource-20091029/
const ContentType = "text/event-stream"
var contentType = []string{ContentType}
var noCache = []string{"no-cache"}
var fieldReplacer = strings.NewReplacer(
"\n", "\\n",
"\r", "\\r")
var dataReplacer = strings.NewReplacer(
"\n", "\ndata:",
"\r", "\\r")
type Event struct {
Event string
Id string
Retry uint
Data interface{}
}
func Encode(writer io.Writer, event Event) error {
w := checkWriter(writer)
writeId(w, event.Id)
writeEvent(w, event.Event)
writeRetry(w, event.Retry)
return writeData(w, event.Data)
}
func writeId(w stringWriter, id string) {
if len(id) > 0 {
w.WriteString("id:")
fieldReplacer.WriteString(w, id)
w.WriteString("\n")
}
}
func writeEvent(w stringWriter, event string) {
if len(event) > 0 {
w.WriteString("event:")
fieldReplacer.WriteString(w, event)
w.WriteString("\n")
}
}
func writeRetry(w stringWriter, retry uint) {
if retry > 0 {
w.WriteString("retry:")
w.WriteString(strconv.FormatUint(uint64(retry), 10))
w.WriteString("\n")
}
}
func writeData(w stringWriter, data interface{}) error {
w.WriteString("data:")
switch kindOfData(data) {
case reflect.Struct, reflect.Slice, reflect.Map:
err := json.NewEncoder(w).Encode(data)
if err != nil {
return err
}
w.WriteString("\n")
default:
dataReplacer.WriteString(w, fmt.Sprint(data))
w.WriteString("\n\n")
}
return nil
}
func (r Event) Render(w http.ResponseWriter) error {
r.WriteContentType(w)
return Encode(w, r)
}
func (r Event) WriteContentType(w http.ResponseWriter) {
header := w.Header()
header["Content-Type"] = contentType
if _, exist := header["Cache-Control"]; !exist {
header["Cache-Control"] = noCache
}
}
func kindOfData(data interface{}) reflect.Kind {
value := reflect.ValueOf(data)
valueType := value.Kind()
if valueType == reflect.Ptr {
valueType = value.Elem().Kind()
}
return valueType
}
SSEvent
是作为扩展实现的, 代码并不在 Gin 的源码中. 先看一下 Event
结构体.
type Event struct {
Event string
Id string
Retry uint
Data interface{}
}
func (r Event) Render(w http.ResponseWriter) error {
r.WriteContentType(w)
return Encode(w, r)
}
Event
实现了 Render
接口, 看一下内部的 Encode
函数.
func Encode(writer io.Writer, event Event) error {
w := checkWriter(writer)
writeId(w, event.Id)
writeEvent(w, event.Event)
writeRetry(w, event.Retry)
return writeData(w, event.Data)
}
过程并不复杂, 分为四步写入, 分别是事件 ID, 事件名 Event, 重连时间 Retry, 消息体 Data.
如果对服务端推送事件不太了解, 可以参考
MDN-使用服务器发送事件..
事件流仅仅是一个简单的文本数据流,文本应该使用 UTF- 8 格式的编码.每条消息后面都由一个空行作为分隔符.以冒号开头的行为注释行,会被忽略.
注:注释行可以用来防止连接超时,服务器可以定期发送一条消息注释行,以保持连接不断.
每条消息是由多个字段组成的,每个字段由字段名,一个冒号,以及字段值组成.
实际上并没有对消息体的格式做任何要求, 这属于前后端协定的范围.
func writeData(w stringWriter, data interface{}) error {
w.WriteString("data:")
switch kindOfData(data) {
case reflect.Struct, reflect.Slice, reflect.Map:
err := json.NewEncoder(w).Encode(data)
if err != nil {
return err
}
w.WriteString("\n")
default:
dataReplacer.WriteString(w, fmt.Sprint(data))
w.WriteString("\n\n")
}
return nil
}
该实现中, 主要使用了 JSON 格式, 但对其他类型的数据直接写入纯文本.
接着看一下流式响应是如何实现的.
// Stream sends a streaming response and returns a boolean
// indicates "Is client disconnected in middle of stream"
func (c *Context) Stream(step func(w io.Writer) bool) bool {
w := c.Writer
clientGone := w.CloseNotify()
for {
select {
case <-clientGone:
return true
default:
keepOpen := step(w)
w.Flush()
if !keepOpen {
return false
}
}
}
}
这是一个非常常见的模式, 使用 for 和 select 以及 channel 实现无限循环.
Context 之内容协商
内容协商通过 Accept
Header 实现, 用于为不同类型的客户端提供不同类型的资源,
比如协商网页语言或响应格式等.
具体可以参考 MDN-内容协商.
// Negotiate contains all negotiations data.
type Negotiate struct {
Offered []string
HTMLName string
HTMLData interface{}
JSONData interface{}
XMLData interface{}
Data interface{}
}
// Negotiate calls different Render according acceptable Accept format.
func (c *Context) Negotiate(code int, config Negotiate) {
switch c.NegotiateFormat(config.Offered...) {
case binding.MIMEJSON:
data := chooseData(config.JSONData, config.Data)
c.JSON(code, data)
case binding.MIMEHTML:
data := chooseData(config.HTMLData, config.Data)
c.HTML(code, config.HTMLName, data)
case binding.MIMEXML:
data := chooseData(config.XMLData, config.Data)
c.XML(code, data)
default:
c.AbortWithError(http.StatusNotAcceptable, errors.New("the accepted formats are not offered by the server")) // nolint: errcheck
}
}
// NegotiateFormat returns an acceptable Accept format.
func (c *Context) NegotiateFormat(offered ...string) string {
assert1(len(offered) > 0, "you must provide at least one offer")
if c.Accepted == nil {
c.Accepted = parseAccept(c.requestHeader("Accept"))
}
if len(c.Accepted) == 0 {
return offered[0]
}
for _, accepted := range c.Accepted {
for _, offert := range offered {
// According to RFC 2616 and RFC 2396, non-ASCII characters are not allowed in headers,
// therefore we can just iterate over the string without casting it into []rune
i := 0
for ; i < len(accepted); i++ {
if accepted[i] == '*' || offert[i] == '*' {
return offert
}
if accepted[i] != offert[i] {
break
}
}
if i == len(accepted) {
return offert
}
}
}
return ""
}
// SetAccepted sets Accept header data.
func (c *Context) SetAccepted(formats ...string) {
c.Accepted = formats
}
总结
Context 的内容就到这里了, 虽然源文件有点长, 但配合注释还是挺清晰的.