- RIP路由欺骗攻击与防御实验详解
w2361734601
智能路由器网络
一、基础网络配置1.路由器R1配置interfaceGigabitEthernet0/0/0ipaddress192.1.2.254255.255.255.0!interfaceGigabitEthernet0/0/1ipaddress192.1.3.254255.255.255.0!routerrip1version2network192.1.2.0network192.1.3.02.路由器R2
- 基于AT89C52单片机的智能导盲杖报警设计
七月小卖铺
单片机单片机嵌入式硬件
点击链接获取Keil源码与ProjectBackups仿真图:https://download.csdn.net/download/qq_64505944/90498287?spm=1001.2014.3001.5503C+22部分参考设计如下:摘要超声波测距技术因其具有较强的指向性、低能耗、较长的传播距离等优点,已成为广泛应用于各类传感器技术和自动控制技术相结合的测距方案之一。超声波传感器利用声
- 思科 N9K 交换机密码恢复
m0_54931486
服务器运维网络
目录1.命令行界面修改密码2.断电/重启恢复密码*从FTP加载镜像修改admin密码有以下几种方式:通过命令行界面,使用admin权限的用户名进行恢复;对设备进行断电/重启设备恢复。1.命令行界面修改密码1.查看账户switch#showuser-accountuser:adminthisuseraccounthasnoexpirydateroles:network-adminuser:dbgus
- Docker Compose 和 Kubernetes(K8s)对比
孽小倩
docker容器dockerk8skubernetes
DockerCompose和Kubernetes(K8s)在某些方面有相似的功能,但它们的核心用途和适用场景不同。以下是它们的主要区别和联系:1.DockerCompose和Kubernetes的区别对比项DockerComposeKubernetes(K8s)核心作用管理多个Docker容器管理容器编排(大规模应用)适用环境本地开发、测试环境生产环境、大规模集群容器编排能力基础编排(启动多个容器
- 【服务器数据恢复】数据中心存储服务器VMware vSAN分布式存储架构数据恢复解析
海境超备
服务器分布式架构网络安全系统安全运维
随着企业数据中心的数据量的不断增加,数据存储和恢复成为了企业必须面对的重要问题。vSAN(VirtualStorageAreaNetwork)分布式存储架构是一种新型的存储技术,它可以有效地解决企业数据存储和管理方面的问题。本文将详细介绍vSAN分布式存储架构的原理和特点,并解析其数据恢复的原理和方法。分布式文件系统(DistributedFileSystem,DFS)是一种能够在多台计算机之间共
- 【人工智能】注意力机制深入理解
问道飞鱼
机器学习与人工智能人工智能注意力机制
文章目录**一、注意力机制的核心思想****二、传统序列模型的局限性****三、Transformer与自注意力机制****1.自注意力机制的数学公式****四、注意力机制的关键改进****1.稀疏注意力(SparseAttention)****2.相对位置编码(RelativePositionEncoding)****3.图注意力网络(GraphAttentionNetwork,GAN)****
- 计算机网络技术服务管理基于Spring Boot-SSM
QQ1978519681计算机程序
网络计算机毕业设计毕业设计数据库springboot
目录一、引言二、用户需求分析三、功能介绍3.1.资源管理:3.2.故障管理:3.3.性能管理:3.4.安全管理:3.5.配置管理:3.6.日志管理:3.7.用户管理:3.8.自动化任务调度:3.9.Web界面管理:3.10扩展性与集成性:四、技术介绍4.1系统架构与技术选型4.2技术选型理由:五、性能需求分析六、安全需求分析结论一、引言随着信息技术的飞
- Transformer与图神经网络的融合与应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer与图神经网络的融合与应用关键词:Transformer,图神经网络,注意力机制,图结构数据,图表示学习,图分类,图生成1.背景介绍近年来,深度学习技术在各个领域取得了显著的进展。其中,Transformer模型和图神经网络(GraphNeuralNetworks,GNNs)是两个备受关注的研究方向。Transformer最初应用于自然语言处理领域,通过自注意力机制实现了并行计
- 深度学习的颠覆性发展:从卷积神经网络到Transformer
AI天才研究院
AI大模型应用入门实战与进阶ChatGPT大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍深度学习是人工智能的核心技术之一,它通过模拟人类大脑中的神经网络学习从大数据中抽取知识,从而实现智能化的自动化处理。深度学习的发展历程可以分为以下几个阶段:2006年,GeoffreyHinton等人开始研究卷积神经网络(ConvolutionalNeuralNetworks,CNN),这是深度学习的第一个大突破。CNN主要应用于图像处理和语音识别等领域。2012年,AlexKrizh
- openSUSE操作系统搭建使用记录
后青春期的诗go
服务器操作系统实战资料linux运维php
操作系统版本:openSUSE-LEAP-15.0-x86-64一、常规操作基本操作1.查看IP信息ipa2.安装命令格式zypperinstallXXX3.安装使用ifconfig命令zypperinstallnet-tools-deprecated4.开启sshd服务/查看服务状态/设为开机启动systemctlstartsshd/systemctlstatussshd/systemctlen
- docker部署nginx+php7.3流程及遇到的坑
匿名用户(192.168.*.*)
linuxdockernginxphpcentos
拉取镜像dockerpullnginx:alpinedockerpullphp:7.3-fpm-alpine创建dockernetwork网络dockernetworkcreatemy_web创建docker容器并拷贝配置文件目录到主机//这一步是为了挂载卷创建主机的挂载目录mkdir~/nginx/{logs,conf.d}创建nginx容器dockerrun-d--rm--namenginxn
- Netty源码—2.Reactor线程模型一
东阳马生架构
Netty应用与源码NettyReactor线程模型
大纲1.关于NioEventLoop的问题整理2.理解Reactor线程模型主要分三部分3.NioEventLoop的创建4.NioEventLoop的启动1.关于NioEventLoop的问题整理一.默认下Netty服务端起多少线程及何时启动?答:默认是2倍CPU核数个线程。在调用EventExcutor的execute(task)方法时,会判断当前线程是否为Netty的Reactor线程,也就
- C1-Week2 Program Assignment: Logistic Regression with a Neural Network mindset
houzhizhen
LogisticRegressionwithaNeuralNetworkmindsetWelcometoyourfirst(required)programmingassignment!Youwillbuildalogisticregressionclassifiertorecognizecats.ThisassignmentwillstepyouthroughhowtodothiswithaNe
- 论文学习11:Boundary-Guided Camouflaged Object Detection
zl29
学习目标检测人工智能
代码来源GitHub-thograce/BGNet:Boundary-GuidedCamouflagedObjectDetection模块作用BGNet利用额外的目标相关边缘语义信息来引导COD任务的特征学习,从而强制模型生成能够突出目标结构的特征。这一机制有助于提高目标边界的精准定位,从而提升伪装目标的检测性能。模块结构BGNet的架构基于Res2Net-50,编码器提取多级特征,解码器通过EA
- arp -a命令输出详解
learning-striving
eNSP网络智能路由器路由器接口计算机网络计算机网络
一、arp-a输出C:\WINDOWS\system32>arp-a接口:169.254.199.84---0x2Internet地址物理地址类型169.254.255.255ff-ff-ff-ff-ff-ff静态224.0.0.201-00-5e-00-00-02静态224.0.0.2201-00-5e-00-00-16静态224.0.0.25101-00-5e-00-00-fb静态224.0.
- 职场人必存!DeepSeek提示词大合集:周报速成、爆款文案、旅行攻略一键生成
阳光永恒736
AI工具人工智能deepseekAI提示词
引言:AI时代,为什么你的提示词总“词不达意”?“同样的AI工具,同事用DeepSeek半小时写完周报还附赠数据分析图,我却只会问‘帮我总结本周工作’?”这可能是多数职场人的真实写照。AI工具的能力边界早已超越基础问答,但90%的用户仍停留在“无效提问”阶段10。而真正拉开差距的,是一套精准的提示词指令库——它能将模糊需求转化为AI可执行的“操作指南”,让效率提升10倍不止。一、职场效率:从“加班
- DeepLabv3+改进18:在主干网络中添加REP_BLOCK
AICurator
深度学习python机器学习deeplabv3+语义分割
【DeepLabv3+改进专栏!探索语义分割新高度】你是否在为图像分割的精度与效率发愁?本专栏重磅推出:✅独家改进策略:融合注意力机制、轻量化设计与多尺度优化✅即插即用模块:ASPP+升级、解码器PS:订阅专栏提供完整代码论文简介我们提出了一种通用的卷积神经网络(ConvNet)构建模块,可在不增加推理时间成本的情况下提升性能。该模块名为多样化分支块(DBB),通过结合不同尺度和复杂度的多样化分支
- Kotlin by属性委托
赵彦军
Kotlin实战指南kotlin属性委托kotlinbyby委托
转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/119939781本文出自【赵彦军的博客】文章目录属性委托要求委托原理实战演练,SharedPreference委托升级之旅ReadWriteProperty延迟委托Lazy在Kotlin中,通过by实现属性委托,属性委托是什么意思呢?简单来说,就是属性的set、get的操作,交给另一
- 深入解析 .NET 中的依赖项加载机制:原理、实现与最佳实践
江沉晚呤时
Netcore前端数据库c#.netcore
在现代应用程序的开发中,依赖项管理与加载是非常重要的组成部分,尤其是在大型系统中,如何高效地加载和管理依赖项可以极大地影响应用程序的性能、可维护性和扩展性。在.NET中,依赖项加载不仅涉及静态依赖的管理,还包括动态加载组件和程序集的能力。本文将详细讲解.NET中的依赖项加载机制,覆盖从静态依赖注入到动态加载的所有重要概念。1.依赖项加载的基本概念1.1依赖项与依赖注入(DI)依赖项是一个对象在其生
- 使用opengl绘制立方体_一步步学OpenGL(25) -《Skybox天空盒子》
weixin_39962153
使用opengl绘制立方体
教程25Skybox天空盒子原文:http://ogldev.atspace.co.uk/www/tutorial25/tutorial25.htmlCSDN完整版专栏:https://blog.csdn.net/cordova/article/category/9266966背景天空盒子是一种让场景看上去更广阔无垠的一种视觉技术,用无缝对接的封闭纹理将摄像机的视口360度无死角的包裹起来。封闭纹
- 鸿蒙Next-获取系统权限-获取麦克风权限
试水年华
鸿蒙Next开发Ark-TS语言Ark-TS语言鸿蒙华为
1.需要先在配置文件中,声明应用需要请求的权限,且设置需要使用的场景+使用原因"requestPermissions":[//申请的网络权限{"name":"ohos.permission.INTERNET"},{//申请麦克风权限"name":"ohos.permission.MICROPHONE","usedScene":{},//申请麦克风权限的原因"reason":"$string:rea
- 华为OD机试九日集训第2期 - 按算法分类,由易到难,循序渐进,提升编程能力和解题技巧,从而提高机试通过率
哪 吒
搬砖工逆袭Java架构师华为od算法九日集训Java
目录一、适合人群二、本期训练时间三、如何参加四、数据结构与算法大纲五、华为OD九日集训第1期第1天、逻辑分析第2天、队列第3天、双指针第4天栈第5天滑动窗口第6天、二叉树第7天、并查集第8天、矩阵第9天、贪心算法六、国内直接使用满血ChatGPT4o、o1、o3-mini-high、Claude3.7Sonnet、满血DeepSeekR11、纯原版ChatGPT、Claude2、技术支持3、支持所
- C 中调用WIN32API函数
就叫二号人物
http://www.pinvoke.net/磐实文章站(首页)首页>VisualBasic软件开发资料>API函数http://www.panshsoft.com/Sort_VB/API_fun/GetWindowRect用法http://blog.csdn.net/coolszy/article/details/5601455函数功能:该函数返回指定窗口的边框矩形的尺寸。该尺寸以相对于屏幕坐标
- 模型部署实战:PyTorch生产化指南
小诸葛IT课堂
pytorch人工智能python
一、为什么要做模型部署?模型部署是将训练好的模型投入实际应用的关键步骤,涉及:模型格式转换(TorchScript/ONNX)性能优化(量化/剪枝)构建API服务移动端集成本章使用ResNet18实现图像分类,并演示完整部署流程。二、模型转换:TorchScript与ONNX1.准备预训练模型importtorchimporttorchvision#加载预训练模型model=torc
- C++基础匿名对象,友元和常成员(const)
没有百宝袋的哆啦A梦
c++javajvm
目录学习内容:1.匿名对象2.友元2.1友元的引入2.2友元函数2.3友元类2.4友元的总结3.常成员(const)3.1常成员的引入3.2常成员函数3.3常对象3.4mutable关键字3.5常函数3.6关于C/C++中const的使用(面试题)学习内容:1.匿名对象1>所谓匿名对象,就是没有名字的对象,生命周期只在当前语句内,所以可以理解成时一个将亡值2>定义格式:直接调用类的构造函数3>使用
- C#抖音无水印视频地址解析
longsky
.netc#视频处理
实现最简单的半手工方式获取抖音无水印视频地址。纯C#代码,无任何第三方控件,一看就会,很简单。主要代码来自于https://blog.csdn.net/qq_15555767博主。他的这篇博文写的很清楚明白。https://blog.csdn.net/qq_15555767/article/details/108997122?utm_medium=distribute.pc_relevant_do
- 【DevOps】Rancher:rancher2.4.16 高可用安装文档
运维归一
DevOpsdockerzookeeper运维
视频教程视频教程:https://edu.csdn.net/learn/38191/604440?spm=1003.2001.3001.4143RancherHA集群安装部署当前最新版本V2.4.16安装流程:rke安装k8s,在k8s集群上搭建helm,通过helm创建rancher容器应用节点名称ip地址系统版本rke,k8s-master01,rancher192.168.1.9centos
- 【 <二> 丹方改良:Spring 时代的 JavaWeb】之 Spring MVC 的核心组件:DispatcherServlet 的工作原理
Foyo Designer
springmvcjavaservletHandlerMappingViewResolver
点击此处查看合集https://blog.csdn.net/foyodesigner/category_12907601.html?fromshare=blogcolumn&sharetype=blogcolumn&sharerId=12907601&sharerefer=PC&sharesource=FoyoDesigner&sharefrom=from_link一、DispatcherServ
- 【脑洞小剧场】零帧起手创业小公司之 第一次技术分享会
Foyo Designer
技术职场小剧职场和发展程序人生学习方法改行学it程序员创富
点击查看小剧场合集https://blog.csdn.net/foyodesigner/category_12896948.html阳光明媚的早晨,段萌儿怀揣着对新工作的无限憧憬,踏入了这家充满未知的小公司。然而,她万万没想到,第一天上班就迎来了一场“惊悚”之旅。阳光透过会议室的窗户,洒在摆满椅子的地板上,技术分享会的氛围既紧张又期待。今天,将是公司第一次正式的技术交流盛会,各路技术大牛摩拳擦掌,
- 分布式系统中的负载均衡
樽酒ﻬق
架构设计负载均衡网络运维
目录分布式系统中的负载均衡引言1.什么是负载均衡?1.1负载均衡的目标2.负载均衡的类型2.1网络负载均衡(NetworkLoadBalancing)2.2应用负载均衡(ApplicationLoadBalancing)2.3全局负载均衡(GlobalLoadBalancing)2.4计算负载均衡(ComputeLoadBalancing)3.负载均衡算法3.1轮询(RoundRobin)3.2加
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不