图像处理之特殊灰度算法技巧


介绍几种特殊的灰度算法滤镜,将彩×××像转换为灰度图像。其中涉及到的有基于阈值的图

像二值化,弗洛伊德.斯坦德伯格抖动算法,基于阈值的部分灰度化

 

基础知识- 怎么把RGB转换为单色的[0 ~256]之间的灰度,最常用的转换公式如下:

Gray = 0.299 * red + 0.587 * green + 0.114 * blue;

 

1.       基于像素平均值的图像阈值二值化算法:

处理流程:

a.      首先将彩×××像转换为灰度图像

b.      计算灰度图像的算术平均值– M

c.      以M为阈值,完成对灰度图二值化( 大于阈值M,像素点赋值为白色,否则赋值为黑

色)

图像效果:


关键代码:

	public BufferedImage filter(BufferedImage src, BufferedImage dest) { 		int width = src.getWidth();         int height = src.getHeight();          if ( dest == null )             dest = createCompatibleDestImage( src, null );         src = super.filter(src, dest);          int[] inPixels = new int[width*height];         int[] outPixels = new int[width*height];         getRGB(src, 0, 0, width, height, inPixels );                  // calculate means of pixel           int index = 0;           double redSum = 0, greenSum = 0, blueSum = 0;           double total = height * width;           for(int row=0; row> 24) & 0xff;                   tr = (inPixels[index] >> 16) & 0xff;                   tg = (inPixels[index] >> 8) & 0xff;                   tb = inPixels[index] & 0xff;                   redSum += tr;                   greenSum += tg;                   blueSum +=tb;               }           }         int means = (int)(redSum / total);         System.out.println(" threshold average value = " + means);                  // dithering          for(int row=0; row> 24) & 0xff;                 tr = (inPixels[index] >> 16) & 0xff;                 tg = (inPixels[index] >> 8) & 0xff;                 tb = inPixels[index] & 0xff;                 if(tr >=means) {                 	tr = tg = tb = 255;                 } else {                 	tr = tg = tb = 0;                 }                 outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb;                          	}         }         setRGB( dest, 0, 0, width, height, outPixels );         return dest; 	}

2.       基于错误扩散的Floyd-Steinberg抖动算法

关于什么是Floyd-Steinberg抖动,参见这里

http://en.wikipedia.org/wiki/Floyd–Steinberg_dithering

图像效果:

关键代码:

	@Override 	public BufferedImage filter(BufferedImage src, BufferedImage dest) { 		int width = src.getWidth();         int height = src.getHeight();          if ( dest == null )         	dest = createCompatibleDestImage( src, null );         src = super.filter(src, dest);          int[] inPixels = new int[width*height];         int[] outPixels = new int[width*height];         getRGB( src, 0, 0, width, height, inPixels );         int index = 0;         for(int row=0; row> 16) & 0xff;                 int g1 = (inPixels[index] >> 8) & 0xff;                 int b1 = inPixels[index] & 0xff;                 int cIndex = getCloseColor(r1, g1, b1);                 outPixels[index] = (255 << 24) | (COLOR_PALETTE[cIndex][0] << 16) | (COLOR_PALETTE[cIndex][1] << 8) | COLOR_PALETTE[cIndex][2];                 int er = r1 - COLOR_PALETTE[cIndex][0];                 int eg = g1 - COLOR_PALETTE[cIndex][1];                 int eb = b1 -  COLOR_PALETTE[cIndex][2];                 int k = 0;                                  if(row + 1 < height && col - 1 > 0) {                 	k = (row + 1) * width + col - 1;                     r1 = (inPixels[k] >> 16) & 0xff;                     g1 = (inPixels[k] >> 8) & 0xff;                     b1 = inPixels[k] & 0xff;                     r1 += (int)(er * kernelData[0]);                     g1 += (int)(eg * kernelData[0]);                     b1 += (int)(eb * kernelData[0]);                     inPixels[k] = (255 << 24) | (clamp(r1) << 16) | (clamp(g1) << 8) | clamp(b1);                 }                                  if(col + 1 < width) {                 	k = row * width + col + 1;                     r1 = (inPixels[k] >> 16) & 0xff;                     g1 = (inPixels[k] >> 8) & 0xff;                     b1 = inPixels[k] & 0xff;                     r1 += (int)(er * kernelData[3]);                     g1 += (int)(eg * kernelData[3]);                     b1 += (int)(eb * kernelData[3]);                     inPixels[k] = (255 << 24) | (clamp(r1) << 16) | (clamp(g1) << 8) | clamp(b1);                 }                                  if(row + 1 < height) {                 	k = (row + 1) * width + col;                     r1 = (inPixels[k] >> 16) & 0xff;                     g1 = (inPixels[k] >> 8) & 0xff;                     b1 = inPixels[k] & 0xff;                     r1 += (int)(er * kernelData[1]);                     g1 += (int)(eg * kernelData[1]);                     b1 += (int)(eb * kernelData[1]);                     inPixels[k] = (255 << 24) | (clamp(r1) << 16) | (clamp(g1) << 8) | clamp(b1);                 }                                  if(row + 1 < height && col + 1 < width) {                 	k = (row + 1) * width + col + 1;                     r1 = (inPixels[k] >> 16) & 0xff;                     g1 = (inPixels[k] >> 8) & 0xff;                     b1 = inPixels[k] & 0xff;                     r1 += (int)(er * kernelData[2]);                     g1 += (int)(eg * kernelData[2]);                     b1 += (int)(eb * kernelData[2]);                     inPixels[k] = (255 << 24) | (clamp(r1) << 16) | (clamp(g1) << 8) | clamp(b1);                 }         	}         }         setRGB( dest, 0, 0, width, height, outPixels );         return dest; 	}
3.       选择性灰度算法

计算选择的颜色与像素灰度颜色之间的几何距离值,跟阈值比较决定是否像素点为灰度

值,可以得到一些让你意想不到的图像处理效果!

图像效果 (Main Color = GREEN, 阈值 = 200)

原图:

处理以后

 关键代码:

	public BufferedImage filter(BufferedImage src, BufferedImage dest) { 		int width = src.getWidth();         int height = src.getHeight();          if ( dest == null )         	dest = createCompatibleDestImage( src, null );          int[] inPixels = new int[width*height];         int[] outPixels = new int[width*height];         getRGB( src, 0, 0, width, height, inPixels );         int index = 0;         for(int row=0; row> 24) & 0xff;                 tr = (inPixels[index] >> 16) & 0xff;                 tg = (inPixels[index] >> 8) & 0xff;                 tb = inPixels[index] & 0xff;                 int gray = (int)(0.299 * (double)tr + 0.587 * (double)tg + 0.114 * (double)tb);                 double distance = getDistance(tr, tg, tb);                 if(distance < threshold) {                 	double k = distance / threshold;                 	int[] rgb = getAdjustableRGB(tr, tg, tb, gray, (float)k);                 	tr = rgb[0];                 	tg = rgb[1];                 	tb = rgb[2];                 	outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb;                 } else {                 	outPixels[index] = (ta << 24) | (gray << 16) | (gray << 8) | gray;                	                 }                          	}         }         setRGB( dest, 0, 0, width, height, outPixels );         return dest; 	}

创建新的目标Image
    public BufferedImage createCompatibleDestImage(BufferedImage src, ColorModel dstCM) {         if ( dstCM == null )             dstCM = src.getColorModel();         return new BufferedImage(dstCM, dstCM.createCompatibleWritableRaster(src.getWidth(), src.getHeight()), dstCM.isAlphaPremultiplied(), null);     }