- python曲线拟合函数scipy.optimize.leastsq()
赵孝正
#scipyscipypythonmatplotlib
目录介绍Parameters:Returns:代码案例介绍scipy.optimize.leastsq(func,x0,args=(),Dfun=None,full_output=0,col_deriv=0,ftol=1.49012e-08,xtol=1.49012e-08,gtol=0.0,maxfev=0,epsfcn=None,factor=100,diag=None)最小化一组方程的平方和
- python 傅里叶曲线拟合
大霸王龙
python傅里叶python机器学习
先看一段效果代码结构拟合曲线的方程将原始数据和拟合结果绘制到一张图上,并保存图片合成视频import部分说明fromscipy.optimizeimportcurve_fitimportmatplotlib.pyplotaspltimportnumpyasnpimportsysimportos拟合方程如下deffourier(x,*args):w=2*np.pi/200ret=0fordeginr
- PYTHON:Scipy的曲线适合NxM阵列?
潮易
pythonscipy开发语言
在Python中,`scipy.optimize`模块中的`curve_fit`函数可以用来拟合一维曲线到数据点,而它并不直接适用于处理二维数组(NxM矩阵)的数据。但是,我们可以将二维矩阵视为N个一维数据集,然后对每个一维数据集应用`curve_fit`来找到对应的一维曲线拟合参数。以下是一个示例代码,展示了如何处理NxM矩阵中的每一行作为一维数据进行曲线拟合:```pythonimportnu
- 第四讲:拟合算法
云 无 心 以 出 岫
数学建模数学建模算法
与插值问题不同,在拟合问题中不需要曲线一定经过给定的点。拟合问题的目标是寻求一个函数(曲线)使得该曲线在某种准则下与所有的数据点最为接近,即曲线拟合的最好(最小化损失函数)。插值算法中,得到的多项式f(x)要经过所有样本点。但是如果样本点太多,那么这个多项式次数过高,会造成龙格现象。尽管我们可以选择分段的方法避免这种现象,但是更多时候我们更倾向于得到-个确定的曲线,尽管这条曲线不能经过每一个样本点
- python奇数平方和_平方和
weixin_39807352
python奇数平方和
平方和误差和最大后验2020-12-2119:32:19多项式曲线拟合问题中的最大后验与最小化正则和平方和误差之间的关系简单证明多项式回归的最大后验等价于最小正则化和平方和误差;主要内容:多项式回归高斯分布贝叶斯定理对数函数计算1.简单回顾一下多项式回归y组合模型方法2020-12-0813:01:57不同的定性预测模型方法或定量预测模型方法各有其优点和缺点,它们之间并不是相互排斥的,而是相互联系
- Origin 2022软件安装包下载及安装教程 免激活永久使用
2401_87084737
vim
Origin是一款由美国OriginLab公司开发的科学绘图软件,旨在帮助科学家快速绘制和分析各种数据图表。Origin可以支持多种数据格式、统计分析、曲线拟合等功能,在科研、工程设计、教学等领域广泛应用。OriginLab公司成立于1992年,当时主要从事数据分析软件的研发和销售。随着科研和工程设计对数据分析和可视化的需求不断增加,OriginLab公司开始研发可视化和科学绘图软件,其中Orig
- 《模式识别与机器学习》第一章
CS_Zero
机器学习人工智能
C1符号含义x\boldxx:向量,曲线拟合问题中的x坐标数值序列。元素个数为N。t\boldtt:向量,曲线拟合问题中的y坐标(target)数值序列。w\boldww:向量,曲线拟合问题中的待估计的参数,即M阶多项式的各阶系数。β\betaβ:标量,协方差的倒数,表示样本的精度。α\alphaα:标量,同上,曲线拟合例子中的先验的精度。多项式曲线拟合E(w)=12∑n=1N{y(xn,w)−t
- 最小二乘法拟合(C++)
龙行泽雨
计算方法最小二乘法c++机器学习
曲线拟合插值与拟合较为相似,同样是给出了数据点,要求求出一个函数,但是插值要求插值数据必须100%正确,即求出来的函数必须都过这些点,而拟合则不一定,因为拟合的数据点本身就不一定正确,比如拿尺子测量某物体的形变趋势,在测量的过程中,本身就存在测量误差,拟合函数强行经过这些点毫无意义,并且这个测量过程中会产生大量的测量数据,使用插值的方法也不适合。因此我们可以得出使用插值的条件:插值数据必须100%
- 激光条纹中心线提取算法FPGA实现方案
MmikerR
#机器视觉#图像处理3D线激光激光中心线提取FPGA图像处理机器视觉工业检测3D测量
1概述激光条纹中心线提取是3D线激光测量领域一个较为基础且重要的算法。目前,激光条纹中心线提取已有多种成熟的算法,有很多相关的博客和论文。激光条纹中心线提取的真实意义在于工程化和产品化的实际应用,而很多算法目前只能用于学术研究或理论实验,无法在应用端或产品端商用化落地。常见的中心线提取算法有:边缘法中心法阈值法形态学细化法极值法灰度重心法曲线拟合法Steger算法上述这些算法中只有灰度重心法,曲线
- graphpad prism8教程柱状图_GraphPad 8.0 新功能:柱状图功能体验大优化!(附教学)...
weixin_39701288
graphpadprism8教程柱状图
GraphpadPrism是由Graphpad公司推出的一款非常实用的医学绘图、统计软件,集生物统计、曲线拟合和科技绘图于一体,适用于Windows和Mac电脑,入门简单、功能强大,在生物学以及社会和物理科学界得到广泛使用。GraphPadPrism8.0柱状图绘制新功能2018年12月初,GraphPadPrism更新了其最新版本为GraphPadPrism8.0。新版本增加了诸多新功能,在数据
- Eigen 的简单使用 与 轨迹拟合代码的理解
HVACoder
面试记录c++算法开发语言
工作中遇到一个问题,发到hmi的车辆引导线为斜的,有一说一,仔细看下这段代码,发现用到了Eigen库用来多项式曲线拟合,线性回归,矩阵向量计算等。#include#include#includeintmain(){Eigen::MatrixXdmatrix_a;matrix_a.resize(2,2);Eigen::IOFormatfmt;fmt.rowPrefix='[';fmt.rowSuff
- 介绍一下四参数曲线拟合算法
耄先森吖
四参数曲线拟合是一种数学方法,用于通过拟合一条曲线来描述一组数据。它通常被用于对给定的一组数据进行回归分析,以获得一条函数方程,用于对未来的数据进行预测。四参数曲线拟合的具体方法是:首先确定一条曲线的形式,例如二次曲线或三次曲线等。然后,确定这条曲线的四个参数,即曲线方程中的常数项。最后,使用最小二乘法或其他优化算法,通过拟合给定数据来确定这四个参数的最优值。四参数曲线拟合算法可以用于许多不同的应
- 在excel中用VB对两列数据进行四参数曲线拟合,并输出方程
kdbshi
excel
可以使用VBA代码来实现在Excel中对两列数据进行四参数曲线拟合,并输出方程。1.首先,在Excel中选择要进行拟合的数据列。2.然后,在Excel中打开"开发人员"工具栏,并单击"VisualBasic"按钮。3.在VisualBasic编辑器中,点击"插入"按钮,并选择"模块"。4.在新插入的模块中,输入以下代码:SubFour_Parameter_Curve_Fit()Dimx()AsDo
- 4参数拟合
amwha
算法
#include#include#include#includeusingnamespacestd;//定义拟合模型doublefit_func(doublea,doubleb,doublec,doubled,doublex){returna+b/(1+c*exp(-d*x));}//定义四参数法曲线拟合函数voidfour_para_fit(vector&x,vector&y,double&a,
- 《视觉SLAM十四讲》第九讲前段实践中g2o实践代码报错解决方法
大二哈
在《视觉SLAM十四讲》中针对于g2o初始化部分代码是无法执行的,在高博的Git上的代码也是无法编译的,会报错:error:nomatchingfunctionforcallto‘g2o::BlockSolver>::BlockSolver(g2o::BlockSolver>::LinearSolverType*&)’定位报错的代码段如下:typedefg2o::BlockSolver>Block
- R可视化之美之科研绘图-21.散点图的曲线拟合
科研私家菜
本内容为【科研私家菜】R可视化之美之科研绘图系列课程快来收藏关注【科研私家菜】01散点图曲线拟合散点图(scattergraph、pointgraph、X-Yplot、scatterchart或scattergram)是科研绘图中最常见的图形类型之一,通常用于显示和比较数值。散点图是使用一系列的散点在直角坐标系中展示变量的数值分布。散点图可以提供三类关键信息:(1)变量之间是否存在数量关联趋势;(
- matlab人口增长模型拟合,matlab曲线拟合人口增长模型及其数量预测
阿依达娜
matlab人口增长模型拟合
实验目的[1]学习由实际问题去建立数学模型的全过程;[2]训练综合应用数学模型、微分方程、函数拟合和预测的知识分析和解决实际问题;[3]应用matlab软件求解微分方程、作图、函数拟合等功能,设计matlab程序来求解其中的数学模型;[4]提高论文写作、文字处理、排版等方面的能力;通过完成该实验,学习和实践由简单到复杂,逐步求精的建模思想,学习如何建立反映人口增长规律的数学模型,学习在求解最小二乘
- 深度学习入门笔记(四)函数与优化方法
zhanghui_cuc
深度学习笔记深度学习笔记人工智能
深度学习有三大部分模型表征(包括模型设计、网络表示等)模型评估(上一篇文章提到的准确召回和损失函数等)优化算法(模型如何学习或更新)本节我们就来介绍模型是如何学习或更新的。4.1损失函数模型的学习,实际上就是对参数的学习。参数学习的过程需要一系列的约束,这个约束就是损失函数。以函数曲线拟合为例,对于每一个样本点,真实值和拟合值之间就存在了一个误差,我们可以通过一个公式来表示这个误差:L(x)=(F
- g2o优化器系列1
Optimization
参考资料:[1]深入理解图优化与g2o:g2o篇[2]SLAM14讲6.4曲线拟合程序[3]SLAM14讲7.8.2PNP中使用g2o[4]SLAM14讲7.9.2ICP中非线性优化[5]SLAM14讲8.5.2定义直接法的边[6]SLAM14讲9.3改进PNP的结果[7]SLAM14讲10.3.2g2o求解BA[8]SLAM14讲11.2.1g2o原生位姿图[9]SLAM14讲11.2.2李代数
- 《Numpy 简易速速上手小册》第8章:Numpy 和 SciPy 的交互(2024 最新版)
江帅帅
《Numpy简易速速上手小册》numpyscipy交互
文章目录8.1Numpy与SciPy的关系8.1.1基础知识8.1.2完整案例:解决线性代数问题8.1.3拓展案例1:数据插值8.1.4拓展案例2:优化问题8.2使用SciPy进行科学计算8.2.1基础知识8.2.2完整案例:曲线拟合8.2.3拓展案例1:积分计算8.2.4拓展案例2:稀疏矩阵运算8.3高级数值模拟示例8.3.1基础知识8.3.2完整案例:微分方程求解8.3.3拓展案例1:优化问题
- Prism8 for Mac 8.4.3 强大的科研医学生物数据处理软件
mac毒
Mac软件科研医学生物数据处理软件
Prism8Mac版是一款非常好用且功能强大的科研医学生物数据处理绘图软件,也是目前市场上唯一易于使用的非线性回归分析软件,Prism8专为科学研究而设计的首选分析和绘图解决方案。加入世界领先的科学家,探索如何使用Prism来节省时间,做出更合适的分析选择,并优雅地绘制和展示您的科学研究。应用介绍Prism8Mac版是一款非常好用且功能强大的科研医学生物数据处理绘图软件,是生物统计学,曲线拟合(非
- GraphPad Prism v9.5.1.733 科研绘图软件多语言
阿成学长_Cain
软件python开发语言
GraphPadPrism集生物统计、曲线拟合和科技绘图于一体,其所具有的功能均非常实用和精炼,包括了一些特色的功能,如ROC曲线分析、Bland-Altman分析等;曲线拟合功能是GraphPadPrism8汉化版超越其他统计软体的制胜法宝,GraphPadPrism8汉化版的线性/非线性拟合功能使用操作极其方便,不仅内置了常见的回归模型,还专门内置了AadvancedRradioligandB
- GraphPad Prism(医学绘图) v9.1.2.226 for Win
科研小行星
Prism9是一款GraphPad公司推出的专业科研医学生物数据处理绘图工具,中文名棱镜。它能够准确的对各种数据进行分析,然后归类最后汇总成各种图表样式,让大家可以轻松完成自己的工作任务。而且其入门简单,功能强大,集生物统计、曲线拟合和科技绘图于一体,完美支持Windows64位系统,为用户提供了结合科学作图、综合曲线拟合等强大功能,可用于理解统计和数据组织,被各种生物学家以及社会和物理科学家广泛
- g2o--ba代码解析
zhanglehes
数学c++源码分析算法
概要g2o是常用的图优化理论c++库,其自带了很多example讲解如何使用该库文件,本文分析其中ba的示例代码。所谓的图优化,就是把一个常规的优化问题,以图(Graph)的形式来表述。在图中,以顶点表示优化变量,以边表示观测方程。于是总体优化问题变为n条边加和的形式(边是约束)。在具体编写g2o代码时,我们也需要明确哪些是顶点(优化项),哪些是边(约束项)。业务场景如上图所示,存在以下变量f--
- C#,计算几何,二维贝塞尔拟合曲线(Bézier Curve)参数点的计算代码
深度混淆
C#计算几何GraphicsRecipesc#曲线插值拟合
PierreBézierBézier算法用于曲线的拟合与插值。插值是一个或一组函数计算的数值完全经过给定的点。拟合是一个或一组函数计算的数值尽量路过给定的点。这里给出二维Bézier曲线拟合的参数点计算代码。区别于另外一种读音接近的贝塞耳插值算法(Bessel'sinterpolation)哈!德国,法国。1文本格式classPoint{doubleX;doubleY;}publicPointGe
- 《SLAM十四讲》Ch7编译报错
Prejudices
SLAMSLAM
《SLAM十四讲》Ch7编译报错原因:视觉SLAM书上的程序使用的g2o版本比较旧了,使用的是c++11版本的g2o。而自己在编译g2o的时候编译的是最新版本的g2o,里面大量使用了c++14标准库的一些新特性,比如std::index_sequence等等。而书上的CMakeLists.txt默认使用的是c++11进行cmake编译,所以报错解决:CMakeLists.txt中更改如下:set(
- 轻松搞定各种柱状图
组学大讲堂
大多数科研文章都离不开图表,尤其是图,漂亮的文章配图能给自己的工作加不少分。因此熟悉一些绘图软件,并将图在文章和PPT中展示出来,是科研训练的重要内容。graphpadprism是一款集生物统计、曲线拟合和科技绘图于一体的超级好用的医学绘图软件,深受生物、医学等科研人员喜爱,使用graphpad可以搞定大部分生物、医学研究所需的统计与作图,今天小编就以柱形图为例,教大家轻松快速地绘制出各种类型漂亮
- 偶次非球面曲线拟合
Dust_Just
MATLAB学习matlab
偶次非球面曲线拟合文章目录偶次非球面曲线拟合前言一、矢高公式二、曲线拟合前言偶次非球面为旋转对称面,所以只需要得到一个截面上的离散点进行矢高公式的曲线拟合即可,然后将曲线旋转对称得到面型,或者将参数导入光学软件中得到透镜面。一、矢高公式以下公式为偶次非球面的矢高公式,z为矢高,r为截面到轴的距离,c为非球面的曲率,k为圆锥系数,ai为偶次非球面的i阶系数。以下为某偶次非球面截面矢高图。在已知离散点
- MATLAB curve fitting toolbox没有怎么办?
Peter1146717850
matlab
版本:MATLABR2023b如果在安装MATLAB时仅仅选择了安装MATLAB,而并未选择其他选项,则在进入MATLAB后会发现顶部的APP栏中无法找到曲线拟合工具箱。本人跟随MATLAB中的教程进行下载时,出现了如下报错:最终解决方案:找到MATLAB的安装包,在不卸载原有MATLAB软件的基础上,重新进行安装即可。在安装时记得勾选曲线拟合工具箱。在产品这一步中,除勾选MATLAB外,再勾选上
- 实践g2o时遇到问题
Optimization
第10章,实践g2o时遇到问题:errorwhileloadingsharedlibraries:libg2o_core.so:cannotopensharedobjectfile:Nosuchfileordirectoryg2o安装cmake..makesudomakeinstall安装在/usr/local/include/g2olibg2o_core.so在/usr/local/lib在bu
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep