- llama-factory 记录
嘟嘟Listing
llama
GitHub-hiyouga/LLaMA-Factory:UnifiedEfficientFine-Tuningof100+LLMs&VLMs(ACL2024)安装gitclonehttps://github.com/hiyouga/LLaMA-Factory.gitcondacreate-nllama_factorypython=3.10condaactivatellama_factorycdL
- STL 在线转 3MF,开启 3D 模型转换新体验
3D小将
迪威模型联讯软件3d3d格式转换
在3D打印和模型设计的奇妙世界里,文件格式的转换常常是一道绕不开的门槛。STL和3MF这两种格式,就像两把不同的钥匙,各自对应着不同的“3D大门”。今天,我们就来聊聊如何在线实现STL在线转3MF,解锁更多3D模型的应用可能。STL与3MF:格式的差异与应用STL,即立体光刻格式(Stereolithography),诞生于1987年,是3D打印领域最早且最常用的文件格式之一。它以三角网格来描述3
- VoVNet(2019 CVPR)
刘若里
论文阅读人工智能计算机视觉学习笔记网络
论文标题AnEnergyandGPU-ComputationEfficientBackboneNetworkforReal-TimeObjectDetection论文作者YoungwanLee,Joong-wonHwang,SangrokLee,YuseokBae,JongyoulPark发表日期2019年04月22日GB引用>LeeYoungwan,HwangJoong-won,LeeSangr
- 蓝牙播放Stereo和Hands-Free AG Audio两种模式的区别?
一只积极向上的小咸鱼
杂知识音视频
当使用蓝牙耳机时,发现电脑的播放设备显示了两种模式(如下图所示),Stereo模式下声音正常,而调到Hands-FreeAGAudio模式下声音频带窄了很多且音质差,典型的电话音,下面具体说说这两种模式的区别。stereo=立体声(音质好,只能听歌)handsfree=免提(音质差,可用麦克风)立体声("Stereo")设备在蓝牙术语中被称为“高级音频分发配置文件”("AdvancedAudioD
- Efficient Large Language Models: A Survey
UnknownBody
SurveyPaper语言模型人工智能自然语言处理
本文是LLM系列文章,针对《EfficientLargeLanguageModels:ASurvey》的翻译。高效的大型语言模型综述摘要1引言2模型为中心的方法3数据为中心的方法4LLM框架5结论摘要大型语言模型(LLM)在自然语言理解、语言生成和复杂推理等重要任务中表现出了非凡的能力,并有可能对我们的社会产生重大影响。然而,这种能力伴随着它们所需的大量资源,突出表明迫切需要开发有效的技术来应对其
- Neurlps2024论文解析|Understanding Representation of Deep Equilibrium Models from Neural Collapse
SJ_HP
论文合集深度均衡模型神经坍缩隐式神经网络不平衡数据集特征收敛自对偶性质
论文标题UnderstandingRepresentationofDeepEquilibriumModelsfromNeuralCollapsePerspective从神经坍缩视角理解深度均衡模型的表示论文链接UnderstandingRepresentationofDeepEquilibriumModelsfromNeuralCollapsePerspective论文下载论文作者Haixiang
- 终于等来能塞进手机的文生图模型!十分之一体量,SnapGen实现百分百的效果
ytsoft001
ai人工智能计算机视觉图像处理AI作画DALL·E2chatgptstablediffusion
本文的共同一作为墨尔本大学的胡冬庭和香港科技大学的陈捷润和黄悉偈,完成于在Snap研究院CreativeVision团队实习期间。主要指导老师为任健、徐炎武和AnilKag,他们均来自SnapCreativeVision团队。该团队的主要研究方向包括EfficientAI和图像/视频/三维生成模型。近些年来,以StableDiffusion为代表的扩散模型为文生图(T2I)任务树立了新的标准,Pi
- llama_factory微调QWen1.5
Kun Li
大语言模型llamaqwen
GitHub-hiyouga/LLaMA-Factory:UnifyEfficientFine-Tuningof100+LLMsUnifyEfficientFine-Tuningof100+LLMs.Contributetohiyouga/LLaMA-FactorydevelopmentbycreatinganaccountonGitHub.https://github.com/hiyouga/L
- 【大模型】大模型分类
IT古董
人工智能人工智能大模型
大模型(LargeModels)通常指参数量巨大、计算能力强大的机器学习模型,尤其在自然语言处理(NLP)、计算机视觉(CV)等领域表现突出。以下是大模型的常见分类方式:1.按应用领域分类自然语言处理(NLP)模型如GPT-3、BERT、T5等,主要用于文本生成、翻译、问答等任务。计算机视觉(CV)模型如ResNet、EfficientNet、VisionTransformer(ViT)等,用于图
- Meta:基于数据关系的LLM高效预训练
大模型任我行
大模型-模型训练人工智能自然语言处理语言模型论文笔记
标题:Data-EfficientPretrainingwithGroup-LevelDataInfluenceModeling来源:arXiv,2502.14709摘要数据高效的预训练已显示出提高缩放定律的巨大潜力。本文认为有效的预训练数据应该在组级别进行管理,将一组数据点作为一个整体而不是独立的贡献者。为此,我们提出了一种新的数据高效预训练方法GroupLevelDataInfluenceMo
- [repo] No such file or directory: ‘/xxxx/.repo/manifests/.git/HEAD‘error: manifest missing or unrea
新镜
git
1、运行repoinit-uxxxxx--no-repo-verify报错:Unabletonegotiatewith:nomatchingkeyexchangemethodfound.Theiroffer:diffie-hellman-group1-sha1fatal:Couldnotreadfromremoterepository.【解决方法】:在~/.ssh/config添加这一行(conf
- 如何解决 CentOS 安装 Nginx 时遇到 “无可用安装包” 的问题
IT小辉同学
centosnginxlinux
如何解决CentOS安装Nginx时遇到“无可用安装包”的问题在CentOS上安装Nginx时,可能会遇到以下错误信息:Error:NomatchingPackagestoinstall这个问题通常出现在系统无法找到Nginx包的情况下。可能的原因是YUM仓库未正确配置或没有启用Nginx的安装源。下面是解决这个问题的步骤:1.安装必要的工具首先,确保系统安装了yum-utils工具包,它包含了很
- 解决tensorflow-addons下载问题Could not find a version that satisfies the requirement
猪猪家的小可爱
AIpython机器学习机器学习人工智能算法
由于要用到tensorflow-addons,所以需要安装对应的库。遇到的问题是:ERROR:Couldnotfindaversionthatsatisfiestherequirementtensorflow-addons(fromversions:none)ERROR:Nomatchingdistributionfoundfortensorflow-addons网上有很多说是pip源的原因,所以
- halcon三维点云数据处理(二十八)reconstruct_3d_object_model_for_matching
mm_exploration
Halcon3dhalcon图像处理点云处理
目录一、reconstruct_3d_object_model_for_matching代码第一部分二、reconstruct_3d_object_model_for_matching代码第二部分三、reconstruct_3d_object_model_for_matching代码第三部分四、reconstruct_3d_object_model_for_matching代码第四部分五、reco
- staruml java类图_使用staruml绘制类图
weixin_39999025
starumljava类图
抽象类的表示选中需要设置的类,勾选Properties->General->IsAbstract进行设置,设置完成后,类名会变成斜体抽象类的表示接口的表示在Properties->General中将Stereotype设置为interface接口的表示新增类的属性选中需要新增属性的类,点击Properties->General->Attributes的右侧按钮在Properties->Genera
- Objective-C实现NLP中文分词(附完整源码)
源代码大师
Objective-C实战教程自然语言处理objective-c中文分词
Objective-C实现NLP中文分词实现中文分词(NLP中的重要任务之一)在Objective-C中需要处理文本的切分和识别词语边界。尽管Objective-C在自然语言处理(NLP)领域并不常见,但通过合理的算法设计和数据结构,可以实现基本的中文分词功能。本文将介绍如何使用基于字典的最大匹配算法(MaximumMatchingAlgorithm),例如正向最大匹配(ForwardMaximu
- unable to launch什么意思_激光SLAM | IMLS-SLAM:基于scan-to-model方法的大场景3D激光SLAM...
weixin_39559097
unabletolaunch什么意思
论文题目:IMLS-SLAM:scan-to-modelmatchingbasedon3DdataIMSL-SLAM和IMSL-SLAM++是kitti数据集上仅次于LOAM的激光SLAM系统,虽然它有一个最大的缺点,就是不实时,而且时间确实非常慢(1.3s),但是作者也给出了这种不实时的原因,是可以改进的。更重要的是,论文里以IMLS曲面为基础进行的scan-to-model匹配方法是值得借鉴的
- SLAM文献之-IMLS-SLAM: scan-to-model matching based on 3D data
点云SLAM
SLAM3d机器学习SLAMIMLSICP
IMLS-SLAM算法原理详解一、算法概述IMLS-SLAM(ImplicitMovingLeastSquaresSLAM)是一种基于3D激光雷达数据的低漂移SLAM算法,由Jean-EmmanuelDeschaud等人在2018年提出。其核心思想是通过隐式移动最小二乘(IMLS)曲面建模实现scan-to-model的匹配框架,显著提升了定位与建图的精度和鲁棒性。该算法在无闭环检测的情况下,4公
- MATLAB利用Filter Design设计滤波器
zxcwxkp
MATLAB数字信号处理
一、FilterDesign设计滤波器设计带通滤波器,若export选中coefficients,则输出到workspace两个数组,SOS与G。若选中objects,则输出到workspace一个滤波器系数集合Hd。也可生成.mat文件,再进行读取load操作。二、从SOS与G中恢复滤波器系数1.函数调用:[B,A]=sos2tf(SOS,G)2.范例:三、从Hd中恢复滤波器系数[B,A]=tf
- 使用Google Cloud Vertex AI构建RAG匹配引擎
vaidfl
python
技术背景介绍RAG(Retrieval-AugmentedGeneration)是一种结合信息检索和生成技术的框架。在GoogleCloudPlatform的VertexAI中,我们可以利用MatchingEngine来快速高效地从大规模的数据集中检索相关文档或上下文。利用预先创建的索引,RAG能够根据用户提供的问题检索到最有用的信息,并辅助生成更精确的回答。核心原理解析RAG匹配引擎在Verte
- KDD2015,Accepted Papers
weixin_34124651
大数据人工智能数据库
AcceptedPapersbySessionResearchSessionRT01:SocialandGraphs1Tuesday10:20am–12:00pm|Level3–BallroomAChair:TanyaBerger-WolfEfficientAlgorithmsforPublic-PrivateSocialNetworksFlavioChierichetti,SapienzaUni
- Linux(Centos 7.6)命令详解:uniq
豆是浪个
linux运维服务器
1.命令作用过滤标准输入的相邻匹配行,写入标准输出(FilteradjacentmatchinglinesfromINPUT(orstandardinput),writingtoOUTPUT(orstandardoutput).)简单作用解释为,删除文件中多余的相邻相同行,仅保留一行。如果没有选项,匹配的行将合并到第一个出现(Withnooptions,matchinglinesaremerged
- 蓝牙耳机的2种模式(Stereo,Hand-free)是什么?
geek_Chen01
计算机外设硬件架构电脑
stereo=立体声(音质好,只能听歌)handsfree=免提(音质差,可用麦克风)立体声("Stereo")设备在蓝牙术语中被称为“高级音频分发配置文件”("AdvancedAudioDistributionProfile"),或缩写为A2DP,是针对单方向传输高质量的双声道立体声设计的。可以简单理解为,音质更高(相对于"Hands-free"模式)。免提("Hands-free")设备分别对
- Unlocking SoC Debugging Challenges: Paving the Way for Efficient Prototyping
思尔芯S2C
fpga开发FPGA原型验证EDAprototypingVerificationLogicAnalysisSoC
Aschipdesigncomplexityincreases,integrationscalesexpandandtime-to-marketpressuresgrow,asaresult,designverificationhasbecomeincreasinglychallenging.Inmulti-FPGAenvironments,thecomplexityofdesigndebuggi
- ShuffleNet V2(2018 CVPR)
刘若里
论文阅读深度学习人工智能学习计算机视觉笔记
论文标题ShuffleNetV2:PracticalGuidelinesforEfficientCNNArchitectureDesign论文作者NingningMa,XiangyuZhang,Hai-TaoZheng,JianSun发表日期2018年07月01日GB引用>NingningMa,XiangyuZhang,Hai-TaoZheng,etal.ShuffleNetV2:Practica
- 士大夫身份第三方水电费第三方
moqiyong666
springjava后端
packagecom.snmocha.snbpm.job;importorg.springframework.stereotype.Component;importcom.xxl.job.core.handler.annotation.XxlJob;importlombok.extern.slf4j.Slf4j;/***Demo定时任务.*Author:zhoudd*Date:2023-01-15
- 记录 Mac M4 安装 RAGFlow 的一次排坑过程
大模型deepseek
先来看看官方文档https://ragflow.io/docs/v0.16.0/,那是相当简单1.下载gitclonehttps://github.com/infiniflow/ragflow.gitcdragflowgitcheckout-fv0.16.02.启动docker-compose-fdocker/docker-compose.ymlup-d啊,报错了nomatchingmanifes
- java实现,使用向量相似度 输入字符串,在定义好的字符串集合中根据语义匹配出最准的一个。
melck
1024程序员节
以下是完整的Java示例代码,包括字符串集合的定义和根据输入字符串匹配最相似字符串的逻辑:importjava.util.*;publicclassSemanticMatching{publicstaticvoidmain(String[]args){//定义字符串集合ListstringCollection=Arrays.asList("Whereistherestroom?","Canyout
- Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention
UnknownBody
LLMDailyLLMcontext语言模型人工智能
本文是LLM系列文章,针对《LeaveNoContextBehind:EfficientInfiniteContextTransformerswithInfini-attention》的翻译。不让任何上下文掉队:无限关注的高效无限上下文Transformer摘要1引言2方法3实验4相关工作5结论摘要这项工作介绍了一种将基于Transformer的大型语言模型(LLM)扩展到具有有限内存和计算的无限
- 什么是前缀匹配
C嘎嘎嵌入式开发
服务器数据库linux
前缀匹配(PrefixMatching)是一种字符串匹配技术,通常用于查找以特定前缀开头的字符串。它在许多应用中都非常重要,例如自动补全、搜索引擎的建议功能、路由查找等。1.前缀匹配的基本概念前缀匹配的目标是从一个字符串集合中找到所有以给定前缀开头的字符串。比如,对于字符串集合{"apple","app","apricot","banana"}和前缀"ap",我们希望找到{"apple","app
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/