Java HashMap 源码笔记

构造器

HashMap提供了四个构造器,

  • public HashMap(int initialCapacity, float loadFactor)
    • initialCapacity:分配的数组大小,默认值为16,最大值为2^30,且必须为2的幂次方
    • loadFactor:加载因子,当数组使用率>loadFactor时,对数组进行扩容
    • tableSizeFor:构造器中调用了该方法,作用是计算出大于等于给定数值的2的幂次方数
    • 该构造器中并没有对各种成员变量进行初始化(比如table)
      public HashMap(int initialCapacity, float loadFactor) {
          if (initialCapacity < 0)
              throw new IllegalArgumentException("Illegal initial capacity: " +
                                                 initialCapacity);
          if (initialCapacity > MAXIMUM_CAPACITY)
              initialCapacity = MAXIMUM_CAPACITY;
          if (loadFactor <= 0 || Float.isNaN(loadFactor))
              throw new IllegalArgumentException("Illegal load factor: " +
                                                 loadFactor);
          this.loadFactor = loadFactor;
          this.threshold = tableSizeFor(initialCapacity);
      }
    
  • public HashMap(int initialCapacity)
  • public HashMap()
  • public HashMap(Map m)
    使用了默认的initialCapacity和loadFactor,并调用putMapEntries插入数据
      public HashMap(Map m) {
            this.loadFactor = DEFAULT_LOAD_FACTOR;
            putMapEntries(m, false);
        }
    
    putMapEntries方法中,先判断table是否存在,如果不存在则依据输入的map大小定义存储空间大小,否则的话判断是否需要扩容,m.size大于当前容量的话则扩容(利用resize方法);然后对map中的数据依次调用putVal方法插入数据
     final void putMapEntries(Map m, boolean evict) {
          int s = m.size();
          if (s > 0) {
              if (table == null) { // pre-size
                  float ft = ((float)s / loadFactor) + 1.0F;
                  int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                           (int)ft : MAXIMUM_CAPACITY);
                  if (t > threshold)
                      threshold = tableSizeFor(t);
              }
              else if (s > threshold)
                  resize();
              for (Map.Entry e : m.entrySet()) {
                  K key = e.getKey();
                  V value = e.getValue();
                  putVal(hash(key), key, value, false, evict);
              }
          }
      }
    
    解析见注释
      /**
       * Implements Map.put and related methods
       * @param onlyIfAbsent if true, don't change existing value
       * @param evict if false, the table is in creation mode.
       * @return previous value, or null if none
       */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                     boolean evict) {
          Node[] tab;Node p; int n, i;
          if ((tab = table) == null || (n = tab.length) == 0)//初始化table变量,即新建一个Node数组
              n = (tab = resize()).length;
          /**
          * 根据key的hash值计算要存储的位置,如果该位置没有数据,则直接存储
          * 若该位置已有数据存在,则判断该位置链表中有没有目标key
          * 位置i根据(n - 1) & hash,n为数组table的长度.因为n为2的幂次方,所以等同于hash%n
          */
          if ((p = tab[i = (n - 1) & hash]) == null)
              tab[i] = newNode(hash, key, value, null);
          else {
              Node e; K k;
              //先于表头查找判断key是否存在
              if (p.hash == hash &&
                  ((k = p.key) == key || (key != null && key.equals(k))))
                  e = p;
              //在余下的节点中查找key
              //如果key不存在,将节点(key,value)加到链表的末尾
              else if (p instanceof TreeNode)
                  e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
              else {
                  for (int binCount = 0; ; ++binCount) {
                      if ((e = p.next) == null) {
                          p.next = newNode(hash, key, value, null);
                          if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                              treeifyBin(tab, hash);
                          break;
                      }
                      if (e.hash == hash &&
                          ((k = e.key) == key || (key != null && key.equals(k))))
                          break;
                      p = e;
                  }
              }
              //e不为null,说明当前key已存在,需要更新value
              if (e != null) { // existing mapping for key
                  V oldValue = e.value;
                  if (!onlyIfAbsent || oldValue == null)
                      e.value = value;
                  afterNodeAccess(e);
                  return oldValue;
              }
          }
          ++modCount;
          //判断是否需要扩容
          if (++size > threshold)
              resize();
          afterNodeInsertion(evict);
          return null;
      }
    

常用方法

put

put方法主要调用了putVal,在上面已有分析。onlyIfAbsent为false,默认不更新已存在的值

public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

get

调用了getNode方法,所以重点看下getNode

public V get(Object key) {
        Node e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
}

getNode的思路很简单,跟putVal基本一致。先判断table是否为空,为空返回null,否则在数组table中查找相同的key。每次总是先检查hash对应位置的头节点,如果头节点key于目标key不一致则遍历该位置的链表,直到找到key或者遍历结束。

final Node getNode(int hash, Object key) {
        Node[] tab;
        Node first, e;
        int n;
        K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
 }

contains

  • containsKey
    也是利用getNode实现的,通过判断getNode方法返回值是否为null
  • containsValue
    遍历table数组中的每个元素,判断是否有相同的value存在
public boolean containsValue(Object value) {
        Node[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
}

remove

HashMap增删改差方法的设计思路都非常一致,这一点非常让人舒服
所以依旧是看一下removeNode方法

public V remove(Object key) {
        Node e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

基本思路是在数组table中寻找hash对应的位置上的节点,并在该节点及其链表上寻找hash值和key值都一致的节点,若有符合情况的节点就把它删掉

final Node removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node[] tab; Node p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {//目标位置不为空
            Node node = null, e; K k; V v;
            //所有节点搜索操作都优先查询头节点
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            //根据节点是否是头节点来完成删除操作
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

内部方法

resize

这个方法的作用:

  • 若table为null,初始化table,并赋予threshold默认值
  • 若table不为null,将table的容量扩大为2倍,
final Node[] resize() {
        Node[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold,
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node[] newTab = (Node[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {//原来有数据,则复制到扩容后的新数组中
            for (int j = 0; j < oldCap; ++j) {
                Node e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node loHead = null, loTail = null;
                        Node hiHead = null, hiTail = null;
                        Node next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

你可能感兴趣的:(Java HashMap 源码笔记)