- YeAudio音频工具的介绍和使用
夜雨飘零1
语音音视频语音识别pythonffmpeg
夜雨飘零音频工具这款Python音频处理工具功能强大,支持读取多种格式的音频文件。它不仅能够对音频进行裁剪、添加混响、添加噪声等多种处理操作,还广泛应用于语音识别、语音合成、声音分类以及声纹识别等多个项目领域。安装使用pip安装。pipinstallyeaudio-U-ihttps://pypi.tuna.tsinghua.edu.cn/simple(推荐)使用源码安装。gitclonehttps
- 音频播放器
最美下雨天
验证的例子:打印ffmpeg支持的所有解码器,解码音视频、字幕image.pngimage.png在声纹识别中,为了满足对不同采样率的要求,常需要对语音进行重采样。重采样即将原始的采样频率变换为新的采样频率以适应不同采样率的要求。image.pngimage.pngJNI在加载的时候会自动调用这个方法image.png什么是重采样呢?就是我们要播放的音频数据的编码格式不一样,比如说采样率、采样位数
- ABeam×StartUp丨ABeam旗下德硕管理咨询(深圳)新创部门拜访「声扬科技」,解密声音的秘密
陵门检录
科技
随着人工智能的快速发展,音频处理、语音分析、声纹识别等技术的应用也日益扩充至各个方面,这些技术不仅是前沿领域的高新科技,也与我们的生活息息相关。近日,ABeam旗下德硕管理咨询(深圳)有限公司(以下简称“ABeam-SZ”)新创部门一行拜访了深圳声扬科技有限公司(以下简称“声扬科技”),深入了解音频处理、语音分析和声纹识别技术的发展近况及在各行业的应用,在未来可行性等方面进行交流探讨,并结合ABe
- 2023年12月27日学习记录_加入噪声
郭小儒
每日学习总结学习python人工智能
目录1、今日计划学习内容2、今日学习内容1、addnoisetoaudioclipssignaltonoiseratio(SNR)加入additivewhitegaussiannoise(AWGN)加入realworldnoises2、使用kaggel上的一个小demo:CNN模型运行时出现的问题调整采样率时出现bug3、明确90dB下能否声纹识别4、流量预测3、实际完成的任务1、今日计划学习内容
- 声纹识别_加入噪声
郭小儒
声纹识别机器学习人工智能学习语音识别
目录1、addnoisetoaudioclipssignaltonoiseratio(SNR)2、加入additivewhitegaussiannoise(AWGN)1.howtogenerateAWGN2.AWGN的频率分析3.加入噪声3、加入realworldnoises1、addnoisetoaudioclips学习如何将噪声加入到audiodata中,后续可以将不同SNR的噪声加入原始信号
- 声纹识别资源汇总(不断更新)
郭小儒
声纹识别学习pandaspython语音识别深度学习机器翻译
目录一、任务说明二、指标三、声纹识别研究现状四、数据集开源(1)VoxCeleb:(2)WSJandLibriSpeechCorpus(3)VOiCESDataset(4)EnglishMulti-speakerCorpusforVoiceCloning五、开源代码1、Alize2、MSRIdentityToolkit3、d-vector4、LSTMwithGE2Eloss5、y-vector调研
- 2023年12月20日学习总结
郭小儒
学习数据库
今日todolist:学习kaggle中storesales中的dartforcasting大概搜集一个声纹识别的报告(老师给的新项目)学习时不刷手机okkkkkkkkkkkkkk开始目录1.时间序列预测-acompleteguide(1)时序预测有三条规则:(2)时序数据timeseriesdata的组成(3)分析的流程1.importlibraries2.导入数据并且初步查看数据3.EDA:e
- 基于d-vector的声纹识别(作为初学者的小总结)
郭小儒
声纹识别python人工智能
基于d-vector的声纹识别(作为初学者的小总结)——2023年12月22日目录基于d-vector的声纹识别(作为初学者的小总结:wink:)——2023年12月22日0、简要介绍1、数据data2、数据预处理3、数据增强dataaugmentation(1)增加白噪声addingwhitenoise(2)更改音高changingpitch(3)增加背景噪声4、创建模型0、简要介绍目的是使用d
- 音频特效生成与算法 3
_Rye_
音频技术音视频语音识别人工智能
15|AI变声:音频AI技术的集大成者AI技术在音频领域发展十分迅速。除了之前介绍的降噪、回声消除以及丢包补偿等方向可以用AI模型来提升音质听感之外,AI模型还有很多有趣的应用。其中比较常见的有ASR(AutomaticSpeechRecognition)可以理解为语音转文字,TTS(TextToSpeech)文字转语音和VPR(VoicePrintRecognition)声纹识别等。在之前说的音
- Speaker Verification,声纹验证详解——语音信号处理学习(九)
LotusCL
声音信号处理学习信号处理学习语音识别人工智能
参考文献:SpeakerVerification哔哩哔哩bilibili2020年3月新番李宏毅人类语言处理独家笔记声纹识别-16-知乎(zhihu.com)(2)MetaLearning–Metric-based(1/3)-YouTube如何理解等错误率(EER,EqualErrorRate)?请不要只给定义-知乎(zhihu.com)本次省略所有引用论文目录一、Introduction模型的简
- 最强大脑第二场战平听音神童!百度大脑小度声纹识别技术解析
付江
百度人工智能
日前,继在江苏卫视《最强大脑》第四季“人机大战”首轮任务跨年龄人脸识别竞赛中击败人类顶级选手后,在上周五晚上,百度的小度机器人再次在声纹识别任务上迎战名人堂选手——11岁的“听音神童”孙亦廷,双方最终以1:1打成平手。被称为“鬼才之眼”的水哥(王昱珩)宣布再度出山,将在下周的第三轮比赛中与“小度”在图像识别方面一决高下。本轮题目规则为:从“千里眼”到“顺风耳”,节目组将第二场比赛范围划定在“听”的
- 2023CPEM电力人工智能大会,联丰迅声斩获“声纹识别技术创新奖”
科技赋能生活
人工智能
没有什么能够阻挡人类对美好未来的向往。11月的贵阳,秋色宜人,天高水远。电力大咖齐聚美丽的林城,聚焦电力人工智能高质量发展之路,碰撞创新智慧,畅想绿色未来。2023年11月3日,第4届电力人工智能大会暨第2届电力行业数字化转型大会在贵州贵阳圆满落下帷幕。本届大会由CPEM全国电力设备管理网、国家能源智能电网(上海)研发中心、复杂能源系统智能计算教育部工程研究中心、中国电子劳动学会双碳和能源创新工作
- 说话人识别声纹识别CAM++,ECAPA-TDNN等算法
loong_XL
深度学习语音识别
参考:https://www.modelscope.cn/models?page=1&tasks=speaker-verification&type=audiohttps://github.com/alibaba-damo-academy/3D-Speaker/blob/main/requirements.txt单个声纹比较可以直接modelscope包运行frommodelscope.pipel
- 基于深度学习的语音识别系统构建
周南音频科技教育学院(AI湖湘学派)
音频算法设计研究开发语音识别人工智能信号处理
加我微信hezkz17进数字音频系统研究开发交流答疑(课题组)项目内容:1.语音识别系统构建:负责基于kaldi的混合语音识别模型系统的构建,包括训练数据的搜集与处理,模型训练测试、rescore解码流程和上线部署等;2.声纹识别系统构建:使用cnn+aam-softmax的模型结构提取说话人声纹特征(embedding),然后在声纹库内进行声纹相似度的检索匹配;3.语种识别算法:使用类似声纹识别
- 多分类loss学习记录
weixin_43870390
分类学习数据挖掘
这里简单的记录在人脸识别/声纹识别中常用的分类loss。详细原理可以参考其他博客。扩展资料1扩展资料2L-softmaxA-softmaxAM-softmaxL-softmax:基于softmax加入了margin,Wx改写为||w||||x||cos(角度),将角度变为了m角度A-softmax:a=Angular,归一化||w||为1,b=0,W*x变成了cos(theta),只优化角度AM-
- 进阶课1——声纹识别
AI 智能服务
AI训练师人工智能语音识别深度学习人机交互搜索引擎
声纹识别是一种生物识别技术,也称为说话人识别,包括说话人辨认和说话人确认两种技术。该技术通过将声信号转换成电信号,再使用计算机进行识别,不同的任务和应用会使用不同的声纹识别技术,例如在缩小刑侦范围时可能需要辨认技术,而在银行交易时则需要确认技术。1.概述2.声纹识别原理声纹识别的技术原理可以分为两个主要步骤:特征提取和模式匹配(模式识别)。在特征提取阶段,声纹识别系统会提取并选择对说话人的声纹具有
- 声纹识别与声源定位(一)
shadowismine
语音识别
针对目前智能计算机及大规模数据的发展,依据大脑处理语音、图像数据方法的deeplearning技术应运而生。deeplearning技术是应用于音频信号识别,模仿大脑的语音信号学习、识别的模式。在音频信号处理的过程中,运用deeplearning进行音频数据的特征提取和训练,将大幅度提高音频信号识别的准确性。首先看下Speakerrecognition声纹识别,声纹是由人类的“发音机理”所产生的,
- 声纹识别与声源定位(二)
shadowismine
语音识别
一、引言什么是声源定位(SoundSourceLocalization,SSL)技术?声源定位技术是指利用多个麦克风在环境不同位置点对声信号进行测量,由于声信号到达各麦克风的时间有不同程度的延迟,利用算法对测量到的声信号进行处理,由此获得声源点相对于麦克风的到达方向(包括方位角、俯仰角)和距离等。当谈及到声源定位,我们很容易联想到人耳定位,人的单耳和双耳都具有定位的能力。在单耳定位中,耳廓各部位会
- 一种基于语音识别的防溺水系统的技术背景
李姝瑶
语音识别人工智能
基于语音识别的防溺水系统是利用语音识别技术来实现对水中人员溺水情况的检测和预警。语音识别技术是计算机科学中的一个分支,主要用于将人类语音转化为文本或命令,并进行计算机处理。在基于语音识别的防溺水系统中,通常会使用语音识别软件来实现对语音的识别和转化,并通过计算机算法分析语音特征,来判断水中人员是否有溺水的风险。为了提高系统的准确性,通常还会使用其他技术来帮助识别和分析水中人员的声音,比如声纹识别技
- 样本量极少如何机器学习?看看这篇Few-Shot Learning综述
人工智能与算法学习
python神经网络机器学习人工智能深度学习
1.样本量极少可以训练机器学习模型吗?在训练样本极少的情况下(几百个、几十个甚至几个样本),现有的机器学习和深度学习模型普遍无法取得良好的样本外表现,用小样本训练的模型很容易陷入对小样本的过拟合以及对目标任务的欠拟合。但基于小样本的模型训练又在工业界有着广泛的需求(单用户人脸和声纹识别、药物研发、推荐冷启动、欺诈识别等样本规模小或数据收集成本高的场景),Few-ShotLearning(小样本学习
- 机器学习 同样数量样本和目标_样本量极少如何机器学习?Few-Shot Learning概述
士节
机器学习同样数量样本和目标
1.样本量极少可以训练机器学习模型吗?在训练样本极少的情况下(几百个、几十个甚至几个样本),现有的机器学习和深度学习模型普遍无法取得良好的样本外表现,用小样本训练的模型很容易陷入对小样本的过拟合以及对目标任务的欠拟合。但基于小样本的模型训练又在工业界有着广泛的需求(单用户人脸和声纹识别、药物研发、推荐冷启动、欺诈识别等样本规模小或数据收集成本高的场景),Few-ShotLearning(小样本学习
- ICASSP 2023说话人识别方向论文合集
语音之家
智能语音人工智能
今年入选ICASSP2023的论文中,说话人识别(声纹识别)方向约有64篇,初步划分为SpeakerVerification(31篇)、SpeakerRecognition(9篇)、SpeakerDiarization(17篇)、Anti-Spoofing(4篇)、others(3篇)五种类型。本文是ICASSP2023说话人识别方向论文合集系列的最后一期,整理了SpeakerRecognitio
- 指纹、刷脸多灾多难,声纹识别能否崛起成为新主流?
Daffodil_51e5
姓名:李沂配19021210904转载自:http://baijiahao.baidu.com/s?id=1651976625619916831&wfr=spider&for=pc【嵌牛导读】:人们较为熟悉的识别技术就包括有指纹识别和人脸识别,它们广泛应用于手机解锁、移动支付、交通乘坐、安防门禁等场景之中,给人们带来了不少便利。不过,由于安全性方面的问题,当前两者的日子却并不好过。基于声纹识别独特
- 基于PaddlePaddle实现的声纹识别系统
夜雨飘零1
语音PaddlePaddle深度学习paddlepaddle人工智能声纹识别深度学习
前言本项目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM++等多种先进的声纹识别模型,不排除以后会支持更多模型,同时本项目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多种数据预处理方法,使用了ArcFaceLoss,ArcFaceloss:AdditiveAngularMarginLoss(加性角度间隔损失函数),对应项目中的AAMLo
- 基于Pytorch实现的声纹识别系统
夜雨飘零1
语音Pytorch深度学习pytorch人工智能python声纹识别深度学习
前言本项目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM++等多种先进的声纹识别模型,不排除以后会支持更多模型,同时本项目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多种数据预处理方法,使用了ArcFaceLoss,ArcFaceloss:AdditiveAngularMarginLoss(加性角度间隔损失函数),对应项目中的AAMLo
- NeMo 声纹识别VPR-实战
wxl781227
ASR实战人工智能声纹识别声纹验证
声纹识别(VPR),生物识别技术的一种,也称为说话人识别,是从说话人发出的语音信号中提取声纹信息,从应用上看,可分为:说话人辨认(SpeakerIdentification):用以判断某段语音是若干人中的哪一个所说的,是“多选一”问题;说话人确认(SpeakerVerification):用以确认某段语音是否是指定的某个人所说的,是“一对一判别”问题。本文主要是识别两个声音是否为同一个人。应用场景
- 怎样用声纹识别,提升智能硬件产品的用户体验?-转
生活的探路者
一、背景当前智能硬件产品中,最耀眼的莫过于百箱大战的智能音箱、百“机”争鸣的智能机器人,这些智能语音产品已逐渐走进百姓的视线中。在智能音箱市场中,且不说国外的AmasonEcho和GoogleHome,仅在国内,去年双十一,天猫精灵99元跳楼价卖了一百万台,还有铺天盖地而来的小爱同学、叮咚音箱、小雅同学、出门问问等。今年,百度推出比天猫精灵还低10元的小度智能音箱,仅卖89元,烧钱大战一个比一个狠
- 使用tensorflow和densenet神经网路实现语谱图声纹识别,即说话人识别。
zhigongjz
神经网络CNN卷积TensorflowDensenet语谱图声纹识别
介绍本文介绍一种使用tensorflow框架和densenet神经网路实现声纹语谱图识别算法,即说话人识别。本文侧重一种解决方案的思路,仅做了小批量数据的简单验证,收敛效果良好,还没有做大量数据集的验证,后期会做一些实际的验证,请持续关注。如果乐意与我交流,文章后面有联系方式,随时欢迎。代码地址码云:https://gitee.com/lizhigong/VoiceprintRecognition
- 使用mondorescue将本机linux centos 7服务器制作成光盘
wuxianfeng1987
Linux
准备重新训练声纹识别,数据集增加了10来G,原来的4台设备完全不够用啊,然后就准备把公司淘汰的i3i5笔记本拿来加入集群,如何快速搭建环境呢,直接将配置好的备份成ios,然后安装,接下来记录下整个流程,感觉以后会用到。步骤:1、wgetftp://ftp.mondorescue.org/centos/7/x86_64/mondorescue.repo[注意要选择ftp下的centos,不然依赖包下
- 教你windows下配置java环境变量&idea配置maven库(标贝科技)
DataBaker标贝科技
常用工具java语音识别人工智能
配置java环境变量+idea配置maven库(标贝科技)前言配置环境变量是小伙伴们入坑的第一步,本文将一步一步详细介绍,保证大家都能够看懂!!!顺便介绍下:我们是一家致力于智能语音交互的AI公司,我们提供了语音识别、语音合成、声纹识别、声音复刻、声音转换等技术产品供小伙伴们测试调用,感兴趣的,第三部分有详细说明!!!!!一、配置java环境变量下载jdk地址:https://www.oracle
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt