- “大模型横扫千军”背后的大数据挖掘--浅谈MapReduce
绒绒毛毛雨
大数据挖掘数据挖掘mapreduce人工智能
文章目录O背景知识1数据挖掘2邦费罗尼原则3TF.IDF4哈希函数5分布式文件系统一、MapReduce基本介绍1.Map任务2.按键分组3.Reduce任务4.节点失效处理5.小测验:在一个大型语料库上有100个map任务和若干reduce任务:二、基于MapReduce的基本运算1.选择(Selection)2.交(Intersection)3.并(Union)4.补(Difference)5
- 深入MapReduce——MRv1设计
黄雪超
大数据基础#深入MapReducemapreduce大数据
引入通过前面篇章,我们对于MapReduce已经有了不错的了解,由于现在几乎没有使用MapReduce去开发业务需求的场景,甚至MapReduce这个引擎都随着时代变化,快要完全被淘汰了,所以我们就不去水看使用MapReduce编程相关的东西,而是把重点放到一些我们比较感兴趣的点上。今天我们先来看看MRv1计算框架的核心设计实现。MRJob生命周期首先,我们梳理MRJob的生命周期流程如下:Job
- Hive面试题汇总
大数据侠客
hive相关问题汇总及解决hivehadoop数据仓库面试
Hive定义Hive是建立在Hadoop上的数据仓库基础构架。可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种
- cascading 入门 (一)
zhumin726
1cascading是什么cascading是一个架构在Hadoop上的API,用来创建复杂和容错数据处理工作流。它抽象了集群拓扑结构和配置来快速开发复杂分布式的应用,而不用考虑背后的MapReduce。Cascading目前依赖于Hadoop提供存储和执行架构,但是CascadingAPI为开发者隔离了Hadoop的技术细节,提供了不需要改变初始流程工作流定义就可以在不同的计算框架内运行的能力。
- 深入MapReduce——引入
黄雪超
大数据基础#深入MapReducemapreduce大数据hadoop
引入前面我们已经深入了HDFS的设计与实现,对于分布式系统也有了不错的理解。但HDFS仅仅解决了海量数据存储和读写的问题。但要想让数据产生价值,一定是需要从数据中挖掘出价值才行,这就需要我们拥有海量数据的计算处理能力。下面我们还是老样子,来数据一下要实现海量计算处理能力,有些什么核心痛点大数据计算核心痛点量级大在稍微大一点的互联网企业,需要计算处理的数据量都开始以PB计了。而传统的计算处理模型中,
- 大数据学习(36)- Hive和YARN
viperrrrrrr
大数据学习hive
&&大数据学习&&系列专栏:哲学语录:承认自己的无知,乃是开启智慧的大门如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦当客户端提交SQL作业到HiveServer2时,HiveServer2会根据用户提交的SQL作业及数据库中现有的元数据信息生成一份可供计算引擎执行的计划。每个执行计划对应若干MapReduce作业,Hive会将所有的MapReduce作业都提交到YARN中。Y
- hadoop常用命令
我要用代码向我喜欢的女孩表白
hadoopnpm大数据
Yarn查看提交到资源调度器的任务(任何用yarn资源的都可以看,比如spark、tez、mapreduce)看正在运行的yarn任务yarnapplication-list杀死对应的yarn任务yarnapplication-kill{application_Id}(id可以通过-list看到)hdfs查看hdfs目录hdfsdfs-ls/(查看本集群的目录)hdfsdfs-lshdfs://i
- 大数据-257 离线数仓 - 数据质量监控 监控方法 Griffin架构
武子康
大数据离线数仓大数据数据仓库java后端hadoophive
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!目前开始更新MyBatis,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)ClickHouse(已
- 浅谈MapReduce
Android路上的人
Hadoop分布式计算mapreduce分布式框架hadoop
从今天开始,本人将会开始对另一项技术的学习,就是当下炙手可热的Hadoop分布式就算技术。目前国内外的诸多公司因为业务发展的需要,都纷纷用了此平台。国内的比如BAT啦,国外的在这方面走的更加的前面,就不一一列举了。但是Hadoop作为Apache的一个开源项目,在下面有非常多的子项目,比如HDFS,HBase,Hive,Pig,等等,要先彻底学习整个Hadoop,仅仅凭借一个的力量,是远远不够的。
- Hadoop
傲雪凌霜,松柏长青
后端大数据hadoop大数据分布式
ApacheHadoop是一个开源的分布式计算框架,主要用于处理海量数据集。它具有高度的可扩展性、容错性和高效的分布式存储与计算能力。Hadoop核心由四个主要模块组成,分别是HDFS(分布式文件系统)、MapReduce(分布式计算框架)、YARN(资源管理)和HadoopCommon(公共工具和库)。1.HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生
- hbase介绍
CrazyL-
云计算+大数据hbase
hbase是一个分布式的、多版本的、面向列的开源数据库hbase利用hadoophdfs作为其文件存储系统,提供高可靠性、高性能、列存储、可伸缩、实时读写、适用于非结构化数据存储的数据库系统hbase利用hadoopmapreduce来处理hbase、中的海量数据hbase利用zookeeper作为分布式系统服务特点:数据量大:一个表可以有上亿行,上百万列(列多时,插入变慢)面向列:面向列(族)的
- Spark集群的三种模式
MelodyYN
#Sparksparkhadoopbigdata
文章目录1、Spark的由来1.1Hadoop的发展1.2MapReduce与Spark对比2、Spark内置模块3、Spark运行模式3.1Standalone模式部署配置历史服务器配置高可用运行模式3.2Yarn模式安装部署配置历史服务器运行模式4、WordCount案例1、Spark的由来定义:Hadoop主要解决,海量数据的存储和海量数据的分析计算。Spark是一种基于内存的快速、通用、可
- HBase介绍
mingyu1016
数据库
概述HBase是一个分布式的、面向列的开源数据库,源于google的一篇论文《bigtable:一个结构化数据的分布式存储系统》。HBase是GoogleBigtable的开源实现,它利用HadoopHDFS作为其文件存储系统,利用HadoopMapReduce来处理HBase中的海量数据,利用Zookeeper作为协同服务。HBase的表结构HBase以表的形式存储数据。表有行和列组成。列划分为
- Hadoop windows intelij 跑 MR WordCount
piziyang12138
一、软件环境我使用的软件版本如下:IntellijIdea2017.1Maven3.3.9Hadoop分布式环境二、创建maven工程打开Idea,file->new->Project,左侧面板选择maven工程。(如果只跑MapReduce创建java工程即可,不用勾选Creatfromarchetype,如果想创建web工程或者使用骨架可以勾选)image.png设置GroupId和Artif
- ArcGIS地图切片原理与算法
数智侠
GIS
ArcGIS地图切图系列之(一)切片原理解析点击打开链接ArcGIS地图切图系列之(二)JAVA实现点击打开链接ArcGIS地图切图系列之(三)MapReduce实现点击打开链接
- 数据中台建设方案-基于大数据平台(下)
FRDATA1550333
大数据数据库架构数据库开发数据库
数据中台建设方案-基于大数据平台(下)1数据中台建设方案1.1总体建设方案1.2大数据集成平台1.3大数据计算平台1.3.1数据计算层建设计算层技术含量最高,最为活跃,发展也最为迅速。计算层主要实现各类数据的加工、处理和计算,为上层应用提供良好和充分的数据支持。大数据基础平台技术能力的高低,主要依赖于该层组件的发展。本建设方案满足甲方对于数据计算层建设的基本要求:利用了MapReduce、Spar
- MIT6.824 课程-MapReduce
余为民同志
6.824mapreduce分布式6.824
MapReduce:在大型集群上简化数据处理概要MapReduce是一种编程模型,它是一种用于处理和生成大型数据集的实现。用户通过指定一个用来处理键值对(Key/Value)的map函数来生成一个中间键值对集合。然后,再指定一个reduce函数,它用来合并所有的具有相同中间key的中间value。现实生活中有许多任务可以通过该模型进行表达,具体案例会在论文中展现出来。以这种函数式风格编写的程序能够
- Hadoop之mapreduce -- WrodCount案例以及各种概念
lzhlizihang
hadoopmapreduce大数据
文章目录一、MapReduce的优缺点二、MapReduce案例--WordCount1、导包2、Mapper方法3、Partitioner方法(自定义分区器)4、reducer方法5、driver(main方法)6、Writable(手机流量统计案例的实体类)三、关于片和块1、什么是片,什么是块?2、mapreduce启动多少个MapTask任务?四、MapReduce的原理五、Shuffle过
- Yarn介绍 - 大数据框架
why do not
大数据hadoop
YARN的概述YARN是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序YARN是Hadoop2.x版本中的一个新特性。它的出现其实是为了解决第一代MapReduce编程框架的不足,提高集群环境下的资源利用率,这些资源包括内存,磁盘,网络,IO等。Hadoop2.X版本中重新设计的这个YARN集群
- 浅析大数据Hadoop之YARN架构
haotian1685
python数据清洗人工智能大数据大数据学习深度学习大数据大数据学习YARNhadoop
1.YARN本质上是资源管理系统。YARN提供了资源管理和资源调度等机制1.1原HadoopMapReduce框架对于业界的大数据存储及分布式处理系统来说,Hadoop是耳熟能详的卓越开源分布式文件存储及处理框架,对于Hadoop框架的介绍在此不再累述,读者可参考Hadoop官方简介。使用和学习过老Hadoop框架(0.20.0及之前版本)的同仁应该很熟悉如下的原MapReduce框架图:1.2H
- Hive的优势与使用场景
傲雪凌霜,松柏长青
后端大数据hivehadoop数据仓库
Hive的优势Hive作为一个构建在Hadoop上的数据仓库工具,具有许多优势,特别是在处理大规模数据分析任务时。以下是Hive的主要优势:1.与Hadoop生态系统的紧密集成Hive构建在Hadoop分布式文件系统(HDFS)之上,能够处理海量数据并进行分布式计算。它利用Hadoop的MapReduce或Spark来执行查询,具备高度扩展性,适合大数据处理。2.支持SQL-like查询语言(Hi
- Spark概念知识笔记
kuntoria
最近总结了个人的各项能力,发现在大数据这方面几乎没有涉及,因此想补充这方面的知识,丰富自己的知识体系,大数据生态主要包含:Hadoop和Spark两个部分,Spark作用相当于MapReduceMapReduce和Spark对比如下磁盘由于其物理特性现在,速度提升非常困难,远远跟不上CPU和内存的发展速度。近几十年来,内存的发展一直遵循摩尔定律,价格在下降,内存在增加。现在主流的服务器,几百GB或
- 【Hadoop】- MapReduce & YARN 初体验[9]
星星法术嗲人
hadoophadoopmapreduce
目录提交MapReduce程序至YARN运行1、提交wordcount示例程序1.1、先准备words.txt文件上传到hdfs,文件内容如下:1.2、在hdfs中创建两个文件夹,分别为/input、/output1.3、将创建好的words.txt文件上传到hdfs中/input1.4、提交MapReduce程序至YARN1.5、可通过node1:8088查看1.6、返回我们的服务器,检查输出文
- DAG (directed acyclic graph) 作为大数据执行引擎的优点
joeywen
分布式计算StormSparkStorm杂谈StormsparkDAG
TL;DR-ConceptuallyDAGmodelisastrictgeneralizationofMapReducemodel.DAG-basedsystemslikeSparkandTezthatareawareofthewholeDAGofoperationscandobetterglobaloptimizationsthansystemslikeHadoopMapReducewhicha
- Hadoop组件
静听山水
Hadoophadoop
这张图片展示了Hadoop生态系统的一些主要组件。Hadoop是一个开源的大数据处理框架,由Apache基金会维护。以下是每个组件的简短介绍:HBase:一个分布式、面向列的NoSQL数据库,基于GoogleBigTable的设计理念构建。HBase提供了实时读写访问大量结构化和半结构化数据的能力,非常适合大规模数据存储。Pig:一种高级数据流语言和执行引擎,用于编写MapReduce任务。Pig
- Hadoop-MapReduce机制原理
H.S.T不想卷
大数据hadoopmapreduce大数据
MapReduce机制原理1、MapReduce概述2、MapReduce特点3、MapReduce局限性4、MapTask5、Map阶段步骤:6、Reduce阶段步骤:7、MapReduce阶段图1、MapReduce概述 HadoopMapReduce是一个分布式计算框架,用于轻松编写分布式应用程序,这些应用程序以可靠,容错的方式并行处理大型硬件集群(数千个节点)上的大量数据(多TB数据集)
- EMR组件部署指南
ivwdcwso
运维EMR大数据开源运维
EMR(ElasticMapReduce)是一个大数据处理和分析平台,包含了多个开源组件。本文将详细介绍如何部署EMR的主要组件,包括:JDK1.8ElasticsearchKafkaFlinkZookeeperHBaseHadoopPhoenixScalaSparkHive准备工作所有操作都在/data目录下进行。首先安装JDK1.8:yuminstalljava-1.8.0-openjdk部署
- hive学习记录
2302_80695227
hive学习hadoop
一、Hive的基本概念定义:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。Hive将HQL(HiveQueryLanguage)转化成MapReduce程序或其他分布式计算引擎(如Tez、Spark)的任务进行计算。数据存储:Hive处理的数据存储在HDFS(HadoopDistributedFileSystem)上。执行引擎:Hive的
- Mapreduce是什么
whisky丶
简单来说,MapReduce是一个编程模型,用以进行大数据量的计算。HadoopMapReduce是一个软件框架,基于该框架能够容易地编写应用程序,这些应用程序能够运行在由上千个商用机器组成的大集群上,并以一种可靠的,具有容错能力的方式并行地处理上TB级别的海量数据集。Mapreduce的特点:软件框架并行处理可靠且容错大规模集群海量数据集
- Hadoop之MapReduce
qq_43198449
1.MapReduce解决的问题1)数据问题:10G的TXT文件2)生活问题:统计分类上海市的图书馆的书2.MapReduce是什么MapReduce是一种分布式的离线计算框架,是一种编程模型,用于大规模数据集(大于1TB)的并行运算将自己的程序运行在分布式系统上。概念是:Map(映射)"和"Reduce(归约)指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduc
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f