Count Primes

Count the number of prime numbers less than a non-negative number, n.

Example:

Input: 10
Output: 4
Explanation: There are 4 prime numbers less than 10, they are 2, 3, 5, 7.

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/count-primes
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

 

 

 

给出一个正整数n,求(0,n)范围内质数的个数。这道题可以很直观的采用暴力解法,设一个计数器result,当0<= n <= 2时,result肯定为零,因为0 ,1都不是质数。所以只需要从n >= 3的时候开始考虑,故result可初始化为1,因为2是质数。遍历[3,n),当遇到一个质数时,计数器加1,直到返回最终结果。初步暴力解法代码如下:

class Solution {
    public int countPrimes(int n) {
        if(n <=2)
        {
            return 0;
        }
        int result = 1;
        for(int i = 3; i < n; i++)
        {
            if(isPrimes(i))
            {
                result++;
            }
        }
        return result;
    }

    public boolean isPrimes(int m)
    {

        for(int i = 2; i <= m/2; i++)
        {
            if(m % i == 0)
            {
                return false;
            }
        }
        return true;
    }
}

这个解法很直观,也无疑是可以求出正确答案的。然而就是效率太低了,因为重复计算了很多不必要的数,而且也不断调用isPrime(int n)这个函数,对时间的损耗实在太大。因此可以在这个基础上作一个小小的优化。

在求一个数m是否是质数时,只需要求出在[2, Math.pow(m,0.5)]这个范围内是否存在一个或以上的数,可以整除m,所以可以把[0,m/2]的范围缩减一下。其次,由于除了0和2以外,所有的偶数都可以被2整除,所以可以排除[3,n)内的所有偶数。还有一个可优化的点就是isPrime(int n)这个函数。由于调用函数的时间较长,因此我们可以把这个函数简化到用数条语句来代替。优化过的代码如下:、

class Solution {
    public int countPrimes(int n) {
        if(n <=2)
        {
            return 0;
        }
        int result = 1;
        for(int i = 3; i < n; i++)
        {
            if(i % 2 == 0)
            {
                continue;
            }
            boolean isPrime = true;
            for(int j = 3; j * j <= i; j += 2)
            {
                if(i % j == 0)
                {
                    isPrime = false;
                    break;
                }
            }
            if(isPrime == true)
            {
                result++;
            }
        }
        return result;
    }

}

 

你可能感兴趣的:(Count Primes)