A Simple Problem with Integers
Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 131119 | Accepted: 40685 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
Hint
The sums may exceed the range of 32-bit integers.
Source
POJ Monthly--2007.11.25, Yang Yi
还是线段树的一道模板题
这题用了cin cout超时了QAQ,不知道是不是我代码的写的太丑
#include#include #include using namespace std; #define MAXN 200010 typedef long long ll; ll n, m; ll a[MAXN]; struct node{ ll l, r, tag,sum; }tree[MAXN << 2]; char ch[2]; void build(ll k, ll l, ll r) { tree[k].l = l; tree[k].r = r; if (l == r) { tree[k].sum = a[l]; return; } ll mid = (l + r) >> 1; build(k << 1, l, mid); build(k << 1 | 1, mid + 1, r); tree[k].sum = tree[k << 1].sum+ tree[k << 1 | 1].sum; } void prework() { for (ll i = 1; i <= n; i++) scanf("%lld", &a[i]); build(1, 1, n); } void change(ll k) { if (tree[k].l == tree[k].r) { tree[k].sum += tree[k].tag; } else { tree[k].sum += (tree[k].r - tree[k].l + 1)*tree[k].tag; tree[k << 1].tag += tree[k].tag; tree[k << 1 | 1].tag += tree[k].tag; } tree[k].tag = 0; } void add(ll k, ll l, ll r, ll x) { if (tree[k].tag) change(k); if (tree[k].l == l&&tree[k].r == r) { tree[k].tag += x; return; } tree[k].sum += (r - l + 1)*x; ll mid = (tree[k].l + tree[k].r) >> 1; if (r <= mid) add(k << 1, l, r, x); else if (l >= mid+1) add(k << 1 | 1, l, r, x); else { add(k << 1, l, mid, x); add(k << 1|1, mid + 1, r, x); } } ll query(ll k, ll l, ll r) { if (tree[k].tag) change(k); ll mid = (tree[k].l + tree[k].r) >> 1; if (tree[k].r == r&&tree[k].l == l) return tree[k].sum; if (l >= mid + 1) return query(k << 1 | 1, l, r); else if (r <= mid) return query(k << 1, l, r); else return query(k << 1, l, mid) + query(k << 1|1, mid+1, r); } void mainwork() { ll num,d, x; for (ll i = 1; i <= m; i++) { scanf("%s", ch); if (ch[0] == 'Q') { scanf("%lld%lld", &d, &x); printf("%lld\n", query(1, d, x)); } else { scanf("%lld%lld%lld",&d,&x,&num); add(1, d, x, num); } } } int main() { while (~scanf("%lld%lld", &n, &m)){ prework(); mainwork(); } return 0; }